Home > Mollusca
Wiwaxia corrugata









3D animation of Wiwaxia corrugata grazing on Morania confluens.
ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM
3D model of Wiwaxia corrugata.
ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM
Reconstruction of armoured slug-like Wiwaxia corrugata.
© MARIANNE COLLINS
Wiwaxia corrugata (ROM 32570). Complete specimen preserved obliquely. Specimen length = 43 mm. Specimen dry – polarized light (left), wet – polarized light (right).
© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON
Wiwaxia corrugata (ROM 56950) – Part (top row) and counterpart (bottom row). Complete specimen preserved obliquely. Specimen length = 51 mm. Specimen dry – direct light (left column), dry – polarized light (right column). Walcott Quarry.
© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON
Wiwaxia corrugata (ROM 56965). Dissociated specimen showing different types of sclerites. Assemblage length = 79 mm. Specimen dry – direct light (left), dry – polarized light (right). Walcott Quarry.
© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON
Wiwaxia corrugata (ROM 57707) – Part and counterpart. Complete specimen in ventral view showing radula (right column). Specimen length = 36 mm. Specimen wet – direct light (left, middle and top right), wet – polarized light (bottom right). Walcott Quarry.
© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON
Wiwaxia corrugata (ROM 57726). Complete specimen in ventral view showing detail of radula. Specimen length = 40 mm. Specimen dry – direct light. Walcott Quarry.
© ROYAL ONTARIO MUSEUM. PHOTO: JEAN-BERNARD CARON
Wiwaxia corrugata (ROM 8596) – Holotype. Figure 3 of Matthew (1899) and photograph of original individual sclerite. Specimen length = 14 mm. Specimen wet – polarized light. Trilobite Beds on Mount Stephen.
© ROYAL ONTARIO MUSEUM. PHOTO: JEAN-BERNARD CARON
Taxonomy:
The relationship of Wiwaxia is hotly debated; its similarities to the molluscs have been highlighted (Conway Morris, 1985; Scheltema et al., 2003; Caron et al., 2006; Caron et al., 2007), but Matthew’s original view that it was related to the annelid worms (Matthew, 1899) still finds some adherents (Butterfield, 1990; Conway Morris and Peel, 1995; Butterfield, 2006; 2008). It is also possible that Wiwaxia branched off before the molluscs and annelids diverged (Eibye-Jacobsen, 2004). Wiwaxia has recently been placed in a group called the halwaxiids, along with the halkieriids, Orthrozanclus, and Odontogriphus (Conway Morris and Caron, 2007).
Wiwaxia – from Wiwaxy Peaks (2,703 m) in Yoho National Park. The word wiwaxy is originally from the Stoney First Nation Nakoda language, meaning “windy.”
corrugata – from the Latin corrugis, “folded, or wrinkled,” in reference to the wrinkled aspect of the sclerites.
Burgess Shale and vicinity: none.
Other deposits: none described, although sclerites have been reported from a number of Middle Cambrian deposits extending from northern Canada (Butterfield, 1994) to China (Zhao et al., 1994).
Age & Localities:
The Walcott and Raymond Quarries on Fossil Ridge. The Trilobite Beds, Tulip Beds (S7) and Collins Quarry on Mount Stephen. Additional smaller localities are known on Mount Field and Mount Odaray.
History of Research:
In an early review of fossils collected from the Trilobite Beds on Mount Stephen by Walker, Canadian palaeontologist G. F. Matthew (1899) described several forms he thought represented tubes of various annelid worms, including one he named Orthotheca corrugata. At the time, Matthew did not know this particular fossil was only part of a much larger organism. It was only when Walcott (1911) discovered articulated and much better preserved specimens from the Phyllopod Bed that the morphology of this species became clearer. Walcott placed corrugata in his new genus Wiwaxia and interpreted it as a polychaete annelid worm (Walcott, 1911). The single best specimen of Walker’s “Orthotheca corrugata” remained unrecognized until it was “rediscovered” in the ROM collections in 1977.
Walcott’s interpretation was called into question in a comprehensive reassessment of the genus (Conway Morris, 1985), and Conway Morris’s link between Wiwaxia mouthparts and the molluscan radula was built upon by Scheltema et al. (2003) and Caron et al. (2006). Butterfield (1990), however, defended an annelid affinity mostly based on the study of individual sclerites, first at the crown-, and later at the stem-group level (Butterfield, 2003; 2006), but further work suggested that the evidence does not conclusively support a close relationship with annelids (Eibye-Jacobsen, 2004). A connection with the halkieriids was drawn early on (Bengtson and Morris, 1984; Conway Morris and Peel, 1995), and expanded more recently (Conway Morris and Caron, 2007).
Other studies have dealt more specifically with the ecology and taphonomy of this animal. The finely spaced patterning of ridges on the scale may have given Wiwaxia an iridescent aspect in life (Parker, 1998). Wiwaxia has proven useful in calculating the extent of decay in fossil assemblages (Caron and Jackson, 2006) and in reconstructing the longer term taphonomic processes responsible for the preservation of the Burgess Shale fossils (Butterfield et al., 2007).
Description:
Wiwaxia corrugata is a slug-like organism up to 5.5 cm in length almost entirely covered (except on the ventral surface) with an array of scale-like elements referred to as sclerites and spines. The body is roughly oval, and lacks evidence of segmentation. The body-covering sclerites are arranged in about 50 rows. In addition, two rows of 7–11 blade-like spines are present on the dorsal surface. Spines and sclerites were inserted directly into the body wall. Wiwaxia’s feeding apparatus consists of two (in rare cases three) toothed plates that have been compared to a molluscan radula or annelid jaws.
Wiwaxia is mostly known from the Walcott Quarry where it is relatively common, representing 0.9% of the specimens counted in the community (Caron and Jackson, 2008).
Ecology:
The similarity of Wiwaxia’s feeding apparatus to that of Odontogriphus suggests that it too fed on the cyanobacterial Morania mats growing on the Cambrian sea floor. Its sclerite armour-plating and long spines, sometimes found broken, suggest that it was targeted by unidentified predators.
References:
BENGSTON, S. AND S. CONWAY MORRIS, 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17:307-329.
BUTTERFIELD, N. J. 1990. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology: 287-303.
BUTTERFIELD, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369(6480): 477-479.
BUTTERFIELD, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43:166-177.
BUTTERFIELD, N. J. 2006. Hooking some stem-group “worms”: fossil lophotrochozoans in the Burgess Shale. BioEssays, 28: 1161-1166.
BUTTERFIELD, N. J. 2008. An early Cambrian radula. Journal of Paleontology, 82(3): 543-554.
CARON, J.-B. AND D. A. JACKSON, 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.
CARON, J.-B., A. H. SCHELTEMA, C. SCHANDER AND D. RUDKIN, 2006. A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442(7099): 159-163.
CARON, J.-B., A. H. SCHELTEMA, C. SCHANDER AND D. RUDKIN. 2007. Reply to Butterfield on stem-group “worms:” fossil lophotrochozoans in the Burgess Shale. BioEssays, 29:200-202.
CONWAY MORRIS, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, Series B, 307(1134): 507-582.
CONWAY MORRIS, S. AND J.-B. CARON, 2007. Halwaxiids and the Early Evolution of the Lophotrochozoans. Science, 315(5816): 1255-1258.
CONWAY MORRIS, S. AND J. S. PEEL, 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 347(1321): 305-358.
EIBYE-JACOBSEN, D. 2004. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia, 37(3): 317-335.
MATTHEW, G. F. 1899. Studies on Cambrian Faunas, No. 3. Upper Cambrian fauna, Mount Stephen, British Columbia. The trilobites and worms. Transactions of the Royal Society, 5: 39-66.
PARKER, A. R. 1998. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proceedings of the Royal Society B: Biological Sciences, 265(1400): 967.
SCHELTEMA, A. H., K. KERTH AND A. M. KUZIRIAN, 2003. Original molluscan radula: Comparisons among Aplacophora, Polyplacophora, Gastropoda, and the Cambrian fossil Wiwaxia corrugata. Journal of Morphology, 257(2): 219-245.
WALCOTT, C. D. 1911. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(2): 109-144.
ZHAO, Y.-l., Y. QIAN AND X.-S. LI, 1994. Wiwaxia from Early-Middle Cambrian Kaili Formation in Taijiang, Guizhou. Acta Palaeontologica Sinica, 33:359-366.
http://www.paleobiology.si.edu/burgess/wiwaxia.html