The Burgess Shale

Isoxys acutangulus

3D animation of Isoxys carinatus.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Unranked clade (stem group arthropods)
Species name: Isoxys acutangulus
Remarks:

The affinity of Isoxys is uncertain because for a long time it was known only from empty carapaces. Recent descriptions of soft parts show that the frontal appendage is similar to that of some megacheiran, or “great appendage,” taxa such as Leanchoilia, Alalcomenaeus, and Yohoia (Vannier et al., 2009; García-Bellido et al., 2009a). The affinity of Megacheira as a whole is uncertain, but it has been suggested that they either sit within the stem-lineage to the euarthropods (Budd, 2002) or they are stem-lineage chelicerates (Chen et al., 2004; Edgecombe, 2010).

Described by: Walcott
Description date: 1908
Etymology:

Isoxys – from the Greek isos, “equal,” and xystos, “smooth surface”; thus referring to the pair of smooth valves.

acutangulus – from the Latin acutus, “sharp, pointed,” and angulus, “angle”; thus referring to the acute angle of the cardinal spines.

Type Specimens: Type status under review –USNM56521 (I. acutangulus) and Holotype –USNM189170 (I. longissimus) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: I. longissimus from Walcott, Raymond and Collins Quarries on Fossil Ridge.

Other deposits: I. chilhoweanus from the Chilhowee Group, Tennessee, USA; I. auritus, I. paradoxus and I. curvirostratus from the Maotianshan Shale of China; I. bispinatus from the Shuijingtuo Formation, Hubei, China; I. wudingensis from the Guanshan fauna of China; I. communis and I. glaessneri from the Emu Bay Shale of Australia; I. volucris from the Buen Formation, Sirius Passet in Greenland; I. carbonelli from the Sierro Morena of Spain, and I. zhurensis from the Profallotaspis jakutensis Zone of Western Siberia. Undescribed species from Canada; Mount Cap Formation in the Mackenzie Mountains, Northwest Territories and the Eager Formation near Cranbrook. Other undescribed species in the Kaili Formation, Guizhou Province, China and the Kinzers Formation, Pennsylvania, USA. See references in Briggs et al., 2008; García-Bellido et al., 2009a,b; Stein et al., 2010; Vannier and Chen, 2000.

Age & Localities:

Age:
Middle Cambrian, Glossopleura to Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott, Raymond and Collins Quarries on Fossil Ridge. Additional localities are known on Mount Field, Mount Stephen – Tulip Beds (S7) and the Trilobite Beds, and near Stanley Glacier.

History of Research:

Brief history of research:

Walcott gave the name Isoxys to specimens from the lower Cambrian Chilhowee Group of Tennessee, USA, in 1890. He then later designated the first species from the Trilobite Beds on Mount Stephen, Anomalocaris? acutangulus (Walcott, 1908), although he placed it erroneously in the genus Anomalocaris. Simonetta and Delle Cave (1975) renamed it Isoxys acutangulus and discovered a second Burgess Shale species, I. longissimus. The original designations were based on carapaces only, making research on the ecology and affinity of Isoxys difficult. Soft parts have recently been described from the Burgess Shale taxa (Vannier et al. 2009, García-Bellido et al. 2009a).

Description:

Morphology:

The most prominent feature of Isoxys is the non-mineralized carapace, which ranged in length from 1 cm to almost 4 cm, and covered most of the body. It was folded to give two equal hemispherical valves, and had pronounced spines at the front and back. A pair of bulbous, spherical eyes protrudes forward and laterally from under the carapace. They are attached to the head by very short stalks. A pair of frontal appendages that are segmented and non-branching (uniramous) is adjacent to the eyes. The flexible appendages are curved with a serrated outline and five segments in total, including a basal part, three segments with stout outgrowths, and a pointed terminal segment.

The trunk of the body has 13 pairs of evenly spaced appendages that are segmented and branch into two (biramous), with slender, unsegmented walking limbs and large, paddle-like flaps fringed with long setae. The telson has a pair of lateral flaps. A cylindrical gut passes from the head to the ventral terminus of the telson, and is lined by paired, lobate gut glands. I. longissimus is distinguished from I. acutangulus by the presence of extremely long spines and an elongated body shape.

Abundance:

Isoxys is known from hundreds of specimens collected on Fossil Ridge. In the Walcott Quarry, Isoxys acutangulus is relatively common and represents about 0.35% of the community whereas Isoxys longissimus is extremely rare (Caron and Jackson, 2008).

Maximum Size:
40 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

The streamlined body, thin carapace, and the presence of large paddle-shaped flaps in the appendages all suggest that Isoxys was a free-swimming animal. The spines and wide telson would have been use for steering and stability in the water column. A predatory lifestyle is indicated by the large eyes, frontal appendage, and gut glands. Isoxys would have swum just above the sea floor, seeking out prey in the water column and at the sediment-water interface.

References:

BRIGGS, D. E. G., B. S. LIEBERMAN, J. R. HENDRICK, S. L. HALGEDAHL AND R. D. JARRARD. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82: 238-254.

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CHEN, J. Y., D. WALOSZEK AND A. MAAS. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37: 3-20.

EDGECOMBE, G. D. 2010. Arthropod phylogeny: An overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure & Development, 39: 74-87.

GARCÍA-BELLIDO, D. C., J. VANNIER AND D. COLLINS. 2009a. Soft-part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontologica Polonica, 54: 699-712.

GARCÍA-BELLIDO, D. C., J. R. PATERSON, G. D. EDGECOMBE, J. B. JAGO, J. G. GEHLING AND M. S. Y. LEE. 2009b. The bivavled arthropods Isoxys and Tuzoia with soft-part preservation from the lower Cambrian Emu Bay Shale Lagerstätte (Kangaroo Island, Australia). Palaeontology, 52: 1221-1241.

SIMONETTA, A.M. AND L. DELLE CAVE. 1975. The Cambrian non trilobite arthropods from the Burgess Shale of British Columbia. A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.

STEIN, M., J. S. PEEL, D. J. SIVETER AND M. WILLIAMS. 2010. Isoxys (Arthropoda) with preserved soft anatomy from the Sirius Passet Lagerstätte, lower Cambrian of North Greenland. 2010. Lethaia, 43: 258-265.

VANNIER, J. AND J.-Y. CHEN. 2000. The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia, 35: 107-120.

VANNIER, J., D. C. GARCÍA-BELLIDO, S. X. HU AND A. L. CHEN. 2009. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas. Proceedings of the Royal Society of London Series B, 276: 2567-2574.

WALCOTT, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone. Reports of the U.S. Geological Survey, 10: 509-763.

WALCOTT, C. D. 1908. Mount Stephen rocks and fossils. The Canadian Alpine Journal, 1: 232-248.

WILLIAM, M., D. J. SIVETER AND J. S. PEEL. 1996. Isoxys (Arthropoda) from the early Cambrian Sirius Passet Lagerstätte, North Greenland. Journal of Paleontology, 70: 947-954.

Other Links:

None

Hurdia victoria

3D animation of Hurdia victoria.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Dinocarida (Order: Radiodonta, stem group arthropods)
Species name: Hurdia victoria
Remarks:

Hurdia is an anomalocaridid, and is usually considered to represent either a basal stem-lineage euarthropod (e.g. Daley et al., 2009), a member of the crown-group arthropods (e.g. Chen et al., 2004), or a sister group to the arthropods (Hou et al., 2006).

Described by: Walcott
Description date: 1912
Etymology:

Hurdia – from Mount Hurd (2,993 m), a mountain northeast of the now defunct Leanchoil railway station on the Canadian Pacific Railway in Yoho National Park. The peak was named by Tom Wilson for Major M. F. Hurd, a CPR survey engineer who explored the Rocky Mountain passes starting in the 1870s.

victoria – unspecified; perhaps from Mount Victoria (3,464 m) on the border of Yoho and Banff National Parks, named by Norman Collie in 1897 to honour Queen Victoria.

Type Specimens: Lectotypes –USNM57718 (H. victoria) andUSNM57721 (H. triangulata) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: Hurdia triangulata.

Other deposits: Potentially other species are represented in Utah (Wheeler Formation) (Briggs et al., 2008), the Jince Formation in the Czech Republic (Chlupáč and Kordule 2002) and the Shuijingtuo Formation in Hubei Province, China (Cui and Huo, 1990) and possibly Nevada (Lieberman, 2003).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott, Raymond and Collins Quarries on Fossil Ridge. Also known from other localities on Mount Field, Mount Stephen – Tulip Beds (S7) – and near Stanley Glacier.

History of Research:

Brief history of research:

Hurdia is a relative newcomer to the anomalocaridids. Although isolated parts of its body were first identified in the early 1900s, no affinity could be determined until the description of whole body specimens by Daley et al. in 2009. Hurdia victoria was the name originally given to an isolated triangular carapace that Walcott (1912) suggested belonged to an unknown arthropod. Proboscicaris, another isolated carapace, was originally described as a phyllopod arthropod (Rolfe, 1962). Hurdia’s frontal appendages were first described by Walcott (1911a) as the feeding limbs of Sidneyia, but were later removed from this genus and referred to as “Appendage F” with unknown affinity (Briggs, 1979).

Like other anomalocaridids, the mouth parts were first described as the jellyfish Peytoia nathorsti (Walcott, 1911b). When Whittington and Briggs (1985) discovered the first whole body specimens of Anomalocaris, the mouth part identity of Peytoia was recognized and “Appendage F” was determined to be the frontal appendage of Anomalocaris nathorsti (later renamed Laggania cambria by Collins (1996). When describing Anomalocaris, Whittington and Briggs (1985) also figured a mouth apparatus with extra rows of teeth.

After two decades of collecting at the Burgess Shale, Desmond Collins from the Royal Ontario Museum (ROM) discovered that this extra-spiny mouth part actually belonged to a third type of anomalocaridid, which also had an “Appendage F” pair and a frontal carapace structure consisting of one Hurdia carapace and two Proboscicaris carapaces (Daley et al., 2009). This is the Hurdia animal. ROM specimens of “Appendage F” showed that it has three distinct morphologies, two of which belongs to the Hurdia animal (known from two species, victoria and triangulata) and one to Laggania cambria.

Description:

Morphology:

Hurdia has a bilaterally symmetrical body that is broadly divisible into two sections of equal lengths. The anterior region is a complex of non-mineralized carapaces consisting of one dorsal triangular H-element (previously called Hurdia) and two lateral subrectangular P-elements (or Proboscicaris). This complex is hollow and open ventrally. It attaches near the anterior margin of the head and protrudes forward. The surfaces of the H- and P-elements are covered in a distinctive polygonal pattern similar to that seen on Tuzoia carapaces. A pair of oval eyes on short stalks protrudes upwards through dorsal-lateral notches in the overlapping posterior corners of the H- and P-elements.

Mouth parts are on the ventral surface of the head, and consist of a circlet of 32 tapering and overlapping plates, 4 large and 28 small, with spines lining the square inner opening. Within the central opening are up to five inner rows of toothed plates. A pair of appendages flanks the mouth part, each with nine thin segments with short dorsal spines and seven elongated ventral spines. The posterior half of the body consists of a series of seven to nine reversely imbricated lateral lobes that extend ventrally into triangular flaps. Dorsal surfaces of the lateral lobes are covered in a series of elongated blades interpreted to be gill structures. The body terminates abruptly in two rounded lobes, and lacks a tailfan. Complete specimens are up to 20 cm in length, although disarticulated fragments may suggest a larger body size up to 50 cm long. Hurdia triangulata differs from Hurdia victoria by having a wider and shorter H-element.

Abundance:

Over 700 specimens of Hurdia have been identified, most of which are disarticulated. Hurdia is found in all Burgess Shale quarries on Fossil Ridge, and is particularly abundant in Raymond Quarry, where it makes up almost 1% of the community (240 specimens). A total of 7 complete body specimens exist.

Maximum Size:
500 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

Hurdia was likely nektonic, since there are no trunk limbs for walking, and the numerous gills suggest an active swimming lifestyle. The animal propelled itself through the water column by waving its lateral lobes and gills. The large eyes, prominent appendages and spiny mouth parts suggest that Hurdia actively sought out moving prey items. Although the function of the frontal carapace remains unknown, it may have played a role in prey capture. If Hurdia were swimming just above the sea floor, it could have used the tip of its frontal carapace to stir up sediment and dislodge prey items, which would then be trapped beneath its frontal carapace. Prey items were funneled towards the mouth by a sweeping motion of the long ventral blades of the frontal appendages, which formed a rigid net or cage. Like other anomalocaridids, Hurdia likely ingested soft-bodied prey.

References:

BRIGGS, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22: 631-663.

BRIGGS, D. E. G., B. S. LIEBERMAN, J. R. HENDRICK, S. L. HALGEDAHL AND R. D. JARRARD. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82: 238-254.

CHEN, J. Y., D. WALOSZEK AND A. MAAS. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37: 3-20.

CHLUPÁČ, I. AND V. KORDULE. 2002. Arthropods of Burgess Shale type from the Middle Cambrian of Bohemia (Czech Republic). Bulletin of the Czech Geological Survey, 77: 167-182.

COLLINS, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov) and order Radiodonta (nov). Journal of Paleontology, 70: 280-293.

CUI, Z. AND S. HUO. 1990. New discoveries of Lower Cambrian crustacean fossils from Western Hubei. Acta Palaeontologica Sinica, 29: 321-330.

DALEY, A. C., G. E. BUDD, J. B. CARON, G. D. EDGECOMBE AND D. COLLINS. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science, 323: 1597-1600.

HOU, X., J. BERGSTRÖM AND P. AHLBERG. 1995. Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of Southwest China. GFF, 117: 163-183.

HOU, X., J. BERGSTRÖM AND Y. JIE. 2006. Distinguishing anomalocaridids from arthropods and priapulids. Geological Journal, 41: 259-269.

LIEBERMAN, B. S. 2003. A new soft-bodied fauna: The Pioche Formation of Nevada. Journal of Paleontology, 77: 674-690.

ROLFE, W. D. I. 1962. Two new arthropod carapaces from the Burgess Shale (Middle Cambrian) of Canada. Breviora Museum of Comparative Zoology, 60: 1-9.

WALCOTT, C. D. 1911a. Middle Cambrian Merostomata. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57: 17-40.

WALCOTT, C. D. 1911b. Middle Cambrian holothurians and medusae. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57: 41-68.

WALCOTT, C. D. 1912. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57: 145-228.

WHITTINGTON, H. B. AND D. E. G. BRIGGS. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British-Columbia. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 309: 569-609.

Other Links:

Hazelia palmata

3D animation of Hazelia conferta and other sponges (Choia ridleyi, Diagoniella cyathiformis, Eiffelia globosa, Pirania muricata, Vauxia bellula, and Wapkia elongata) and Chancelloria eros a sponge-like form covered of star-shaped spines.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Demospongea (Order: Monaxonida)
Species name: Hazelia palmata
Remarks:

Hazelia is considered a primitive demosponge, close to Falospongia and Crumillospongia (Rigby, 1986). Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Described by: Walcott
Description date: 1920
Etymology:

Hazelia – from Hazel Peak (3,151 m), the older name for Mount Aberdeen, located 4 km SSW of Lake Louise in Banff National Park, Alberta. Mount Aberdeen was named in honor of Lord Gordon in 1897, the Marquis of Aberdeen and the Governor General of Canada from 1893 to 1898.

palmata – from the Latin palm, “palm of the hand,” referring to the broad cup-shape of this sponge and its resemblance to a cupped hand.

Type Specimens: Lectotypes – USNM 66463 (H. palmata – type species), 66465 (H. delicatula), USNM 66505 (H. dignata), USNM 66473 (H. grandis), USNM 66474 (H. nodulifera), USNM 66472 (H. obscura); Holotypes – USNM 66476 (H. conferta), USNM 66779 (H. crateria), USNM 66475 (H. luteria) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. Holotype –ROM53573 (H. lobata) in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: H. conferta Walcott, 1920, H. crateria Rigby, 1986, H. delicatula Walcott, 1920, H. dignata Walcott, 1920, H. grandis Walcott, 1920, H. lobata Rigby and Collins, 2004, H. luteria Rigby, 1986, H. nodulifera Walcott, 1920, H. obscura Walcott, 1920. Most species known from the Walcott Quarry (See Rigby, 1986 and Rigby and Collins, 2004).

Other deposits: H. walcotti (Resser and Howell, 1938) from the Early Cambrian Kinzers Formation of Pennsylvania (See Rigby, 1987).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone to Bolaspidella Zone (approximately 505 million years ago).
Principal localities:

Burgess Shale and vicinity: Hazelia is particularly common in the Walcott Quarry and is less common in the Raymond and Collins Quarries on Fossil Ridge. Many species also occur on Mount Stephen at the Trilobite Beds, Tulip Beds (S7), and other smaller localities.

Other deposits: H. palmata Walcott, 1920 from the Middle Cambrian Marjum Formation (Rigby et al., 1997).

History of Research:

Brief history of research:

Walcott described seven species of Hazelia in his 1920 paper on the Burgess Shale sponges. The genus was redescribed by Rigby in 1986 when two new species were added and one excluded from the genus (H. mammillata now referred to Moleculospina mammillata). Rigby and Collins (2004) added another species based on new material collected by the Royal Ontario Museum.

Description:

Morphology:

Species of Hazelia have a large variation in morphology with wide cup-shaped forms (H. palmata, H. crateria, H. luteria), long cone-shaped forms (H. conferta, H. grandis, H. obscura), branched forms (H. delicatula, H. dignata), and nodular to lobate forms (H. lobata, H. nodulifera). While there is this significant variety of overall shapes, the different species of Hazelia have a common microstructure. The walls are thin and composed of small tightly packed simple spicules that form a net-like structure and diverge outwards producing a plumose pattern. The walls are perforated with small canals to allow water flow. The base of each sponge would have had a small attachment structure.

In addition to its open shield-like shape, H. palmata possesses distinct radial tracts of spicules which go beyond the margins of the sponge for at least a couple of millimeters.

Abundance:

Hazelia is very common in the Walcott Quarry and represents 9.5% of the community (Caron and Jackson, 2008).

Maximum Size:
150 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

Hazelia would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 105 p.

RIGBY, J. K. 1987. Early Cambrian sponges from Vermont and Pennsylvania, the only ones described from North America. Journal of Paleontology, 61: 451-461.

RIGBY, J. K. L. F. GUNTHER AND F. GUNTHER. 1997. The first occurrence of the Burgess Shale Demosponge Hazelia palmata Walcott, 1920, in the Cambrian of Utah. Journal of Paleontology, 71: 994-997.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None

Hamptonia bowerbanki

Hamptonia bowerbanki (ROM 53547). Overall view and close up of a large specimen showing the long and coarse oxeas (spicules). Specimen length = 184 mm. Specimen wet – polarized light (both images). Tulip Beds (S7) on Mount Stephen.

© Royal Ontario Museum. Photos: Jean-Bernard Caron

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Demospongea (Order: Monaxonida)
Species name: Hamptonia bowerbanki
Remarks:

Hamptonia is considered a primitive demosponge (Rigby, 1986). Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Described by: Walcott
Description date: 1920
Etymology:

Hamptonia – unspecified, but it comes possibly from the town of Hampton in Virginia. This town is home of the Langley Memorial Aeronautical Laboratory, which Walcott helped to create when he became first chairman of the NACA Executive Committee in 1915 (predecessor of NASA).

bowerbanki – for British naturalist and palaeontologist James Scott Bowerbank (1797-1877), best known for his studies of British sponges.

Type Specimens: Lectotype –USNM66493 (H. bowerbanki) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. Holotype –ROM44270 (H. elongata) in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: H. elongata Rigby and Collins, 2004 from the east side of Mount Field in Yoho National Park.

Other deposits: H. parva, from the Middle Cambrian Wheeler and Marjum Formations in Utah (Rigby et al., 2010); H. christi from the Lower Ordovician of Morocco (Botting, 2007).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone to late Middle Cambrian Bolaspidella Assemblage Zone (approximately 505 million years ago).
Principal localities:

Burgess Shale and vicinity: The Walcott Quarry on Fossil Ridge. The Trilobite Beds and Tulip Beds (S7) on Mount Stephen.

Other deposits: H. bowerbanki from the Middle Cambrian Wheeler and Marjum Formations in Utah (Rigby et al., 2010).

History of Research:

Brief history of research:

Hamptonia was described by Walcott in his 1920 monograph on the sponges from the Burgess Shale. Rigby (1986) redescribed the genus, considering it to be closely related to Leptomitus and included it among the monaxial demosponges. Rigby and Collins (2004) described a new species, H. elongata, from material recently collected by the Royal Ontario Museum on Mount Field.

Description:

Morphology:

Hamptonia is a medium to large sub-hemispherical to globose sponge. The skeleton is composed of simple spicules of two sizes. Bundles or singly spaced long (up to 1 cm) coarse spicules are orientated vertically upwards away from the wall. The space between these large spicules is filled by bundle of small thatched spicules. There is a narrow central cavity and the oscular opening is circular. Faint canals are visible parallel to the long spicules that would have allowed water through the skeleton. Hamptonia may be confused with the central disc of Choia. However, Hamptonia has spicules that are much finer than Choia. H. elongata mainly differs from H. bowerbanki in that it has a branched skeleton.

Abundance:

Hamptonia bowerbanki represents only 0.09 % of the Walcott Quarry community (Caron and Jackson, 2008). Hamptonia elongata is known from a single specimen.

Maximum Size:
210 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

Hamptonia would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

BOTTING, J. P. 2007. ‘Cambrian’ demosponges in the Ordovician of Morocco: insights into the early evolutionary history of sponges. Geobios, 40: 737-748.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

RIGBY, J. K., S. B. CHURCH AND N. K. ANDERSON. 2010. Middle Cambrian Sponges from the Drum Mountains and House Range in Western Utah. Journal of Paleontology, 84: 66-78.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None

Hallucigenia sparsa

3D animation of Hallucigenia sparsa.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Xenusia (Order: Scleronychophora, stem group onychophorans)
Species name: Hallucigenia sparsa
Remarks:

Hallucigenia is regarded as a member of the “lobopodans,” a group of vermiform Cambrian organisms possessing pairs of leg-like extensions of the body. The affinities of these animals are controversial; they have been placed at the base of a clade comprised of anomalocaridids and arthropods (Budd, 1996), or in a stem-group to modern onychophorans (Ramsköld and Chen, 1998).

Described by: Walcott
Description date: 1911
Etymology:

Hallucigenia – from the Latin hallucinatio, “wandering of the mind,” after the bizarreness of the animal.

sparsa – from the Latin sparsus, “rare, or scattered,” reflecting the rarity of the specimens available in the original study.

Type Specimens: Holotype –USNM83935 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: H. fortis from the Middle Cambrian Chengjiang biota (Hou and Bergström 1995).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge. The Tulip Beds (S7) on Mount Stephen.

History of Research:

Brief history of research:

Hallucigenia was originally described as “Canadia sparsa” by Walcott (1911) in a review of various Burgess Shale “annelids.” One specimen was illustrated twenty years later (Walcott, 1931), but the first thorough study of this animal wasn’t published until Conway Morris (1977) demonstrated that it did not belong to the genus Canadia or to the annelids at all. His reconstruction showed a bizarre animal walking on spines, with dorsal tentacles interpreted as a feeding apparatus (Conway Morris, 1977). The new genus name Hallucigenia was coined in reference to this “dreamlike” appearance and also reflected the organism’s uncertain affinities. It was later shown that the supposed tentacles represented just one row of paired “legs” – the others were buried under a layer of rock and the paired spines were on the dorsal surface (Ramsköld and Hou, 1991, Ramsköld, 1992). The anteroposterior orientation was also reversed, with the former head interpreted as possible decay fluids seeping from the body (Ramsköld, 1992).

Description:

Morphology:

Hallucigenia has a worm-like body with a small head at the end of a long neck; the trunk bears seven pairs of long dorsal spines and seven pairs of slender leg-like lobes. The spacing between lobes and spines is relatively constant. The spine pairs are shifted forward so that the posterior pair of legs does not have a corresponding pair of spines above. Each leg terminates in a pair of claws and the rigid spines have inflexible basal plates. The neck area bears two or three pairs of very fine anterior “appendages” lacking terminal claws. The head is indistinct but the mouth is anterior; a straight gut ends in a posterior anus. It is possible the posterior end is in fact more bulbous than previously thought.

Abundance:

About thirty specimens were studied by Conway Morris (1977). Overall, Hallucigenia is rare, and in the Walcott Quarry it represents 0.19% of the specimens counted in the community (Caron and Jackson, 2008).

Maximum Size:
30 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

Hallucigenia is often found in association with the sponge Vauxia and other organic debris. This co-occurrence has led to suggestions that Hallucigenia fed on sponges, using its clawed legs to hang on, with its spines protecting it from predation. It is also possible that Hallucigenia scavenged on decaying animal remains.

References:

BUDD, G. E. 1996. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia, 29: 1-14.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. 1977. A new metazoan from the Burgess Shale of British Columbia. Palaeontology, 20: 623-640.

CONWAY MORRIS, S. 1999. The crucible of creation: the Burgess Shale and the rise of animals. Oxford University Press, USA.

HOU, X. AND J. A. N. BERGTRÖM. 1995. Cambrian lobopodians – ancestors of extant onychophorans? Biological Journal of the Linnean Society, 114(1): 3-19.

RAMSKÖLD, L. 1992. The second leg row of Hallucigenia discovered. Lethaia, 25(2): 221–224.

RAMSKÖLD, L. AND X. HOU. 1991. New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature, 351: 225-228.

RAMSKÖLD, L. AND J. Y. CHEN. 1998. Cambrian lobopodians: morphology and phylogeny, p. 107-150. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Volume 29. Columbia University Press, New York.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

WALCOTT, C. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85(3): 1-46.

Other Links:

Pirania muricata

3D animation of Pirania muricata and other sponges (Choia ridleyi, Diagoniella cyathiformis, Eiffelia globosa, Hazelia conferta, Vauxia bellula, and Wapkia elongata) and Chancelloria eros a sponge-like form covered of star-shaped spines.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Demospongea (Order: Monaxonida)
Species name: Pirania muricata
Remarks:

Pirania is considered a primitive demosponge (Rigby, 1986). Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Described by: Walcott
Description date: 1920
Etymology:

Pirania – from Mount Saint Piran (2,649 m), situated in the Bow River Valley in Banff National Park, Alberta. Samuel Allen named Mount St. Piran after the Patron Saint of Cornwall in 1894.

muricata – from the Latin muricatus, “pointed, or full of sharp points.” The name refers to the large pointed spicules extending out from the wall of the sponge.

Type Specimens: Lectotype –USNM66495 (erroneously referred as 66496 in Rigby, 1986), in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none

Other deposits: Pirania auraeum Botting, 2007 from the Lower Ordovician of Morocco (Botting, 2007); Pirania llanfawrensis Botting, 2004 from the Upper Ordovician of England (Botting, 2004).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge. The Trilobite Beds and Tulip Beds (S7) on Mount Stephen and several smaller sites on Mount Field, Mount Stephen and Mount Odaray.

History of Research:

Brief history of research:

Pirania was first described by Walcott (1920). Rigby (1986) redescribed this sponge and concluded that the skeleton is composed of hexagonally arranged canals, large pointed spicules and tufts of small spicules. This sponge was also reviewed by Rigby and Collins based on new material collected by the Royal Ontario Museum (2004).

Description:

Morphology:

Pirania is a thick-walled cylindrical sponge that can have up to four branches. The skeleton of the sponge is composed of tufts of small spicules and has very distinctive long pointed spicules that emerge from the external wall. Long canals perforate the wall of the sponge to allow water flow through it. Branching occurs close to the base of the sponge.

Abundance:

Pirania is common in most Burgess Shale sites but comprises only 0.38% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
30 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

Pirania would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall. The brachiopods Nisusia and Micromitra a range of other sponges and even juvenile chancelloriids are often found attached to the long spicules of this sponge, possibly to avoid higher turbidity levels near the seafloor.

References:

BOTTING, J. P. 2004. An exceptional Caradoc sponge fauna from the Llanfawr Quarries, Central Wales and phylogenetic implications. Journal of Systematic Paleontology, 2: 31-63.

BOTTING, J. P. 2007. ‘Cambrian’ demosponges in the Ordovician of Morocco: insights into the early evolutionary history of sponges. Geobios, 40: 737-748.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None

Petaloptyon danei

Petaloptyon danei (MCZ 101624) – Holotype. Lower part of a moderately complete specimen showing several panels with gaps. Specimen height = 42 mm. Specimen dry – polarized light. Trilobite Beds on Mount Stephen.

© MUSEUM OF COMPARATIVE ZOOLOGY AT HARVARD UNIVERSITY. PHOTO: DESMOND COLLINS

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Calcarea (Order: Heteractinida)
Species name: Petaloptyon danei
Remarks:

Petaloptyon is considered a calcareous sponge belonging to the Family Eiffeiliidae (Rigby and Collins, 2004). Calcarea sponges are the only sponges with calcium carbonate (calcite or aragonite) spicules. They are thought to be an early branch within the phylum Porifera and are mainly found in the tropics today.

Described by: Raymond
Description date: 1931
Etymology:

Petaloptyon – from the Greek, petalon, meaning “leaf,” and ptyon, meaning “fan.” This name refers to the broad open petal-like shape of this sponge.

danei – from the Greek dan, “torch.” This name may refer to the torch-like shape of this sponge.

Type Specimens: Holotype – MCZ 101624, in the Museum of Comparative Zoology at Harvard University Cambridge, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Trilobite Beds and the Tulip Beds (S7) locality on Mount Stephen. The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Raymond (1931) named Petaloptyon danei based on a couple of specimens collected during his visits to the Trilobite Beds with Harvard students. At the time, Raymond classified this new animal as an octocoral (soft coral). In 1986, Rigby described a new sponge Canistrumella alternata, but it was later discovered that this was essentially the same form that Raymond had described in 1931 (Rigby and Collins, 2004) and Canistrumella was made a junior synonym of Petaloptyon.

Description:

Morphology:

Petaloptyon has a very distinct and unusual globlet-like shape. It has an open conical to basket-like skeleton that is composed of alternating triangular shaped panels (up to 12) that may or may not have circular to elliptical gaps within them. The walls of this sponge are very thin and composed of spicules with five rays. At the top, the oscular margin has a scalloped appearance. At the base of the sponge there is a stalk and an attachment structure.

Abundance:

Petaloptyon is a very rare sponge with only a handful of specimens known.

Maximum Size:
75 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

Petalopyton would have lived attached to the sea floor. Food particles were extracted from the water as it passed through canals in the sponge’s wall.

References:

RAYMOND, P. E. 1931. Notes on invertebrate fossils, with descriptions of new species. Bulletin of the Museum of Comparative Zoology, Harvard University, 55(6):165-213.

RIGBY, J. K. 1986. Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

Other Links:

None

Diraphora bellicostata

3D animation of Diraphora bellicostata and other brachiopods (Acrothyra gregaria, Micromitra burgessensis, Nisusia burgessensis, and Paterina zenobia).

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Rhynchonellata (Order: Orthida)
Species name: Diraphora bellicostata
Remarks:

Diraphora belongs to the Family Bohemiellidae.

Described by: Walcott
Description date: 1924
Etymology:

Diraphora – from the Greek deiras, “ridge,” and phoras, “bearing.”

bellicostata – from the Latin bellus, “beautiful,” and costatus, “ribbed.”

Type Specimens: Syntypes –USNM69731-69737 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none to date. The Burgess Shale brachiopods in particular from the Trilobite Beds on Mount Stephen need to be re-examined (see also Brief history of research).

Other deposits: Several species are known in North America and Australia.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Originally assigned to Eoorthis by Walcott (1924), this species was subsequently reassigned by Bell as the type species of a new genus, Diraphora (Bell, 1941). Diraphora bellicostata has not been studied since its original description by Walcott in 1924. Walcott’s description is cursory, inadequately diagnosing the specimen, and no types were designated. The species needs to be redescribed.

Description:

Morphology:

Diraphora bellicostata possesses sharp ornamental lines (costae) radiating on its surface from the hinge. The shells would have been articulated with short and small teeth, like in Nisusia, a comparable form from the Burgess Shale. No preserved soft parts are known and the shell was originally mineralized.

Abundance:

Diraphora bellicostata is known from several hundred specimens in the Walcott Quarry and is the most abundant of all brachiopods but still represents a relatively small fraction of the entire fauna (<1.3%) (Caron and Jackson, 2008).

Maximum Size:
10 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

It is likely that Diraphora had a short, stout pedicle from which it was attached to the substrate. Some specimens are attached to spicules of sponges in particular of Pirania. Other organisms (for example Mackenzia) attached themselves on isolated valves of Diraphora (representing dead individuals), which they used as anchors. Extraction of food particles from the water would have been possible thanks to a filter-feeding apparatus (located between the shells) called a lophophore.

References:

BELL, C. W. 1941. Cambrian Brachiopoda from Montana. Journal of Paleontology, 15: 193-255.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

WALCOTT, C. D. 1924. Cambrian and Ozarkian Brachiopoda. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67: 477-554.

Other Links:

None

Dinomischus isolatus

Reconstruction of Dinomischus isolatus.

© Marianne Collins

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Non applicable
Species name: Dinomischus isolatus
Remarks:

Although it has been suggested that Dinomischus may be related to the ectoprocts (Conway Morris, 1977), its unusual morphology has not yet been conclusively related to a known phylum and as such its affinities remain unclear.

Described by: Conway Morris
Description date: 1977
Etymology:

Dinomischus – from the Greek dinos, “goblet,”, and michos, “stalk or stem.” The name refers to the wine glass-shape of the animal.

isolatus – from the Latin insula, “island.” The name refers to the non-gregarious life habit of this animal.

Type Specimens: Holotype –USNM198735 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: D. venutus Chen, Hou and Lu, 1989 from the Lower Cambrian Chengjiang fauna.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

Burgess Shale and vicinity: Walcott Quarry, Raymond Quarry, Tulip Beds (S7)

Other deposits: A single specimen of D. isolatus was also reported from the Middle Cambrian Kaili Formation (Peng et al., 2006).

History of Research:

Brief history of research:

D. isolatus was among the original fossils collected by Walcott, although it was not formally described until 1977 by Conway Morris. The original description was based on three specimens. A second species was added by Chen et al. (1989) based on material from the Chengjiang in China. Further specimens have been collected by the Royal Ontario Museum from sites on both Fossil Ridge and Mount Stephen.

Description:

Morphology:

Dinomischus consists of a cup-shaped calyx supported by a long stem that terminates in a bulbous swelling. A circle of 20 stiff bracts up to 4.5 mm in length surround the upper margin of the calyx. These point upward and project beyond the level of the anus and the mouth and are interpreted as part of a filter feeding apparatus. Reflective material in the central part of the calyx has been interpreted as a U-shaped gut, with a large sac-like stomach positioned centrally and a mouth and anus on the upper surface. The stem appears to be a rigid structure and the bulbous termination is interpreted as an attachment structure.

Abundance:

Dinomischus is very rare. Only three specimens were originally described from the Burgess Shale. A few additional specimens are known in the Burgess Shale collections of the Royal Ontario Museum.

Maximum Size:
28 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

Dinomischus was a stalked filter feeder that lived anchored to the sea floor. Its ring of bracts would have captured food particles from passing water and moved them to the mouth.

References:

CONWAY MORRIS, S. 1977. A new entoproct-like organism from the Burgess Shale of British Columbia. Palaeontology, 20(4): 833-845.

CHEN, J. HOU, X. AND H. LU. 1989. Early Cambrian hock glass-like rare sea animal Dinomischus (Entoprocta) and its ecological features. Acta Palaeontologica Sinica., 28 (1): 58-71.

PENG, J., Y. L. ZHAO AND J. P. LIN. 2006. Dinomischus from the Middle Cambrian Kaili Biota, Guizhou, China. Acta Geologica Sinica-English Edition, 80: 498-501.

Other Links:

None

Diagoniella hindei

3D animation of Diagoniella cyathiformis and other sponges (Choia ridleyi, Eiffelia globosa, Hazelia conferta, Pirania muricata, Vauxia bellula, and Wapkia elongata) and Chancelloria eros a sponge-like form covered of star-shaped spines.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Kingdom: Tulip Beds (S7)
Phylum: Tulip Beds (S7)
Higher Taxonomic assignment: Hexactinellida (Order: Reticulosa)
Species name: Diagoniella hindei
Remarks:

Diagoniella is placed in the Family Protospongiidae (primitive hexactinellids) and may be confused with Protospongia (Rigby, 1986). Hexactinellid sponges (glass sponges) have a skeleton composed of four to six-pointed siliceous spicules. They are considered to be an early branch within the Porifera phylum due to their distinctive composition.

Described by: Walcott
Description date: 1920
Etymology:

Diagoniella – from the Greek dia, “throughout, during or across”, and gon, “corner, joint or angle” refering to the diagonal spicules of this sponge.

hindei – for Dr. G. J. Hinde, a British palaeontologist who worked on fossil sponges.

Type Specimens: Lectotype –USNM66503 (D. hindei), in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. (D. cyathiformis type and repository information unknown.)
Other species:

Burgess Shale and vicinity: D. cyathiformis (Dawson, 1889) from the Trilobite Beds and Tulip Beds on Mount Stephen, Walcott Quarry on Fossil Ridge and Stanley Glacier (Caron et al., 2010).

Other deposits: D. coronata Dawson, 1890 from the Ordovician of Québec at Little Métis.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone to late Middle Cambrian Bolaspidella Assemblage Zone (approximately 505 million years ago). Back to top
Principal localities:

Burgess Shale and vicinity: This sponge has been found at the Walcott Quarry on Fossil Ridge, the Trilobite Beds and Tulip Beds (S7) localities on Mount Stephen and from Stanley Glacier in Kootenay National Park.

Other deposits: D. cyathiformis (Dawson, 1889) from the Ordovician of Québec at Little Métis to the Middle Cambrian Wheeler and Marjum Formations in Utah (for D. cyathiformis) D. hindei Walcott, 1920 from the Cambrian of Utah and Nevada as well (Rigby, 1978, 1983).

History of Research:

Brief history of research:

Diagoniella was described by Rauff in 1894 as a subgenus of Protospongia. Walcott described a new species, D. hindei, in his 1920 monograph of the sponges from the Burgess Shale and made Diagoniella a valid genus, considering it distinct from Protospongia. Ribgy (1986) restudied the sponges of the Burgess Shale including D. hindei and Rigby and Collins (2004) concluded that another species, known in other Cambrian deposits, D. cyathiformis, is also present in the Burgess Shale.

Description:

Morphology:

D. hindei is a small and simple conical sac-like sponge. The skeleton is composed of diagonally orientated coarse spicules along the length of the sponge. These spicules are known as stauracts, and differ from the normal six rayed spicules of the hexactinellid sponges in that they have two rays reduced which gives them a distinctive cross-shape. The spicules knit together to form a net, although, unlike some hexactinellid sponges this net is not fused, which make the sponges very delicate. D. cyathiformis is a larger (up to 120 mm) and more elongate, conical species. The long spicules form a tuft-like root structure at the base of the sponge.

Abundance:

Diagoniella is relatively common but represents only 0.24% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
18 mm

Ecology:

Life habits: Tulip Beds (S7)
Feeding strategies: Tulip Beds (S7)
Ecological Interpretations:

Diagoniella would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., R. GAINES, G. MANGANO, M. STRENG AND A. DALEY. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the Southern Canadian Rockies. Geology, 38: 811-814.

RIGBY, J. K. 1978. Porifera of the Middle Cambrian Wheeler Shale, from the Wheeler Amphitheater, House Range, in Western Utah. Journal of Paleontology, 52: 1325-1345.

RIGBY, J. K. 1983. Sponges of the Middle Cambrian Marjum Limestone from the House Range and Drum Mountains of Western Millard County, Utah. Journal of Paleontology, 57: 240-270.

RIGBY, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None