The Burgess Shale

Zacanthoides romingeri

Zacanthoides romingeri (figure 3) illustrated by Rominger (1887) as Embolimus spinosa.

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Trilobita (Order: Corynexochida)
Species name: Zacanthoides romingeri
Remarks:

Trilobites are extinct euarthropods, probably stem lineage representatives of the Mandibulata, which includes crustaceans, myriapods, and hexapods (Scholtz and Edgecombe, 2006).

Described by: Rominger
Description date: 1887
Etymology:

Zacanthoides – probably from the Greek z(a), “very,” and akanthion, “thistle” or “porcupine” or “hedgehog,” and oides, “resembling;” thus, very thistle- or porcupine-like.

romingeri – after Carl Rominger, a Michigan paleontologist who in 1887 published the first descriptions of trilobites from Mount Stephen.

Type Specimens: Type status under review – UMMP 4871 (2 specimens), University of Michigan Museum of Paleontology, Ann Arbor, Michigan, USA.
Other species:

Burgess Shale and vicinity: Zacanthoides sexdentatus, Z. submuticus, Z. longipygus, Z. planifrons, Z. divergens, all from older and younger Middle Cambrian rocks on Mount Stephen, Mount Odaray, and Park Mountain (Rasetti, 1951).

Other deposits: other species elsewhere in North America.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Trilobite Beds on Mount Stephen.

History of Research:

Brief history of research:

In 1887 Carl Rominger published an engraving of a nearly complete and markedly spiny trilobite and named it Embolimus spinosa. In 1908 Charles Walcott introduced the combination Zacanthoides spinosus for the Mount Stephen species and for a similar trilobite from Nevada. The next change came in 1942, when Charles Resser at the United States National Museum asserted that the Mount Stephen species was sufficiently distinct that it required a new name. Resser chose to honour the man who first formally described many of the common Mount Stephen trilobites, and Zacanthoides romingeri remains the combination in use today.

Description:

Morphology:

Hard parts: adult dorsal exoskeletons can reach up to 6 cm in length, tapering back from a large crescentic cephalon through a thorax of nine segments, to a relatively small rounded-triangular pygidium with long marginal spines.

The wide free cheeks bear strong genal spines; short, thorn-like intragenal spines mark the posterior corners of the fixed cheeks. The glabella is long and narrow, slightly expanded forwards. There are four pairs of lateral glabellar furrows; the anterior two pairs are weaker and angled to the front, the stronger posterior two are angled back. Very long narrow eyes that bow strongly outward are located far back on the cephalon. The occipital ring extends rearward into a strong, broad-based spine. Long, blade-shaped terminal spines on the wide pleurae curve progressively more backwards. A slender needle-like spine arises from the axial ring of the eighth thoracic segment. There are four pygidial axial rings; five pairs of marginal spines, each successively shorter, are directed rearwards and extend beyond the tip of the pygidium.

Unmineralized anatomy: not known.

Abundance:

Zacanthoides romingeri is moderately abundant at the Mount Stephen Trilobite Beds but absent from Fossil Ridge. Complete trilobites with the free cheeks in place are very scarce, and this species is mostly found as disarticulated sclerites. Its distinctive characteristics, however, usually allow even isolated pieces to be readily identified.

Maximum Size:
60 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

Zacanthoides romingeri adults very likely walked along the sea bed. The overall spinosity of this species may have served as a deterrent to predators, or possibly helped to break up the visual outline of the animal, making it harder to see on the sea floor (Rudkin, 1996).

References:

RASETTI, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections, 116 (5): 1-277.

RESSER, C. E. 1942. Fifth contribution to nomenclature of Cambrian trilobites. Smithsonian Miscellaneous Collections, 101 (15): 1-58.

ROMINGER, C. 1887. Description of primordial fossils from Mount Stephens, N. W. Territory of Canada. Proceedings of the Academy of Natural Sciences of Philadelphia, 1887: 12-19.

RUDKIN, D. M. 1996. The Trilobite Beds of Mount Stephen, Yoho National Park, p. 59-68. In R. Ludvigsen (ed.), Life in Stone – A Natural History of British Columbia’s Fossils. UBC Press, Vancouver.

RUDKIN, D. M. 2009. The Mount Stephen Trilobite Beds, p. 90-102. In J.-B. Caron and D. Rudkin (eds.), A Burgess Shale Primer – History, Geology, and Research Highlights. The Burgess Shale Consortium, Toronto.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216: 395-415.

WALCOTT, C. D. 1888. Cambrian fossils from Mount Stephens, Northwest Territory of Canada. American Journal of Science, Series 3, 36: 163-166.

WALCOTT, C. D. 1908. Mount Stephen rocks and fossils. Canadian Alpine Journal, 1:232-248.

Other Links:

Yuknessia simplex

3D animation of Yuknessia simplex.
© Phlesch Bubble

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Non applicable
Species name: Yuknessia simplex
Remarks:

Walcott (1919) considered Yuknessia as a green alga, a view shared by Conway Morris and Robison (1988). However, no revision of the type material from the Burgess Shale has been published since its original description and its affinities remain uncertain.

Described by: Walcott
Description date: 1919
Etymology:

Yuknessia – from Yukness Mountain (2,847m), a Peak in Yoho National Park, east of the Burgess Shale.

simplex – from the Latin simplex, meaning “simple,” in reference to the simple morphology of this alga.

Type Specimens: Holotype –USNM35406 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none

Other deposits: Yuknessia sp. from the Lower Cambrian Niutitan Formation in China (Yang et al., 2003).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone to Ptychagnostus punctuosus Zone (approximately 505 million years ago).
Principal localities:

Burgess Shale and vicinity: The Walcott Quarry on Fossil Ridge and the Trilobite Beds on Mount Stephen.

Other deposits: Y. simplex is known from the Middle Cambrian Spence Shale and the Marjum and Wheeler Formations in Utah (Conway Morris and Robison, 1988).

History of Research:

Brief history of research:

This genus was described by Charles Walcott (1919) as a possible green alga. However, like all the algae from the Burgess Shale, it awaits a modern redescription (see Dalyia). Conway Morris and Robison (1988) described specimens of this species from several Utah deposits.

Description:

Morphology:

This alga has long branches emerging from a short but wide hollow stem covered of small conical elements or plates. The plates were the attachment sites of the branches. The branches show strong similarities with Dalyia and suggest the two species might be synonymous, with Yuknessia representing the main stem structure of the Dalyia branches.

Abundance:

Yuknessia is very rare and represents only 0.04% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
30 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

The wide stem suggests this species was attached to the sea floor within the photic zone rather than being free floating.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. AND R. A. ROBISON. 1988. More soft-bodied animals from the Middle Cambrian of Utah and British Columbia. University of Kansas Paleontological Contributions, 122 p.

WALCOTT, C. 1919. Cambrian Geology and Paleontology IV. Middle Cambrian Algae. Smithsonian Miscellaneous Collections, 67(5): 217-260.

YANG, R., W. ZHANG, L. JIANG AND H. GAO. 2003. Chengjiang biota from the Lower Cambrian Niutitang Formation, Zunyi County, Guizhou Province, China. Acta Palaeontologica Sinica, 77: 145-150.

Other Links:

None

Testing this Change

Acanthotretella spinosa

Reconstruction of Acanthotretella spinosa.

© MARIANNE COLLINS

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Lingulata (Order: Siphonotretida, stem group brachiopods)
Species name: Acanthotretella spinosa
Remarks:

Acanthotretella spinosa is probably related to a primitive group of brachiopods of the Order Siphonotretida (Holmer and Caron, 2006).

Described by: Holmer and Caron
Description date: 2006
Etymology:

Acanthotretella – from the Greek akantha, “thorn,” and tretos, “perforated,” and the Latin diminutive ella, describing the small, perforated, spiny shell.

spinosa – from the Latin spinosus, referring to the exterior spines.

Type Specimens: Holotype –ROM57749 in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: none.

Other deposits: Acanthotretella decaius from the early Cambrian Guanshan fauna, China.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Specimens were first illustrated as Lingulella sp. by Jin, et al. (1993), and formally described as Acanthotretella spinosa by Holmer and Caron (2006). New characters preserved in a related species from China (Acanthotretella decaius, Zhifei et al., 2010) reinforce the probable position of this genus within the Order Siphonotretida.

Description:

Morphology:

The shell of Acanthotretella is mainly organic in composition with probably only minor organo-phosphatic mineralization, and is ventri-biconvex. Both valves are covered in long, slender spines that penetrate the shell and are posteriorly inclined, angled obliquely away from the anterior margin. A long, flexible pedicle emerges from an external tube that extends from the pedicle foramen along the ventral valve. The pedicle is at least three to four times the length of the valves. The visceral area of both valves is short and triangular, and does not extend to mid-valve. Other interior features are poorly known.

Abundance:

Most specimens come from the Walcott Quarry and represent one of the rarest brachiopods with less than 0.05% of the entire fauna (Caron and Jackson, 2008).

Maximum Size:
8 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

The long, thin pedicle and overall shell shape probably preclude an infaunal habit. Pedicles of several specimens were found attached at the terminal bulb to organic structures, suggesting that Acanthotretella spinosa was epibenthic. The pedicle was likely able to maintain the shell in an upright position well above the sediment-water interface. Extraction of food particles from the water would have been possible thanks to a filter-feeding apparatus (located between the shells) called a lophophore.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

HU, S. X., Z. F. ZHANG, L. E. HOLMER AND C. B. SKOVSTED. 2010. Soft-part preservation in a linguliform brachiopod from the lower Cambrian Wulongqing Formation (Guanshan Fauna) of Yunnan, South China. Acta Palaeontologica Polonica, 55: 495-505.

HOLMER, L. E. AND J.-B. CARON. 2006. A spinose stem-group brachiopod with pedicle from the Middle Cambrian Burgess Shale. Acta Zoologica (Stockholm), 87: 273-290.

JIN, Y. G, X. G. HOU. AND H. Y. WANG. 1993. Lower Cambrian pediculate lingulids from Yunnan, China. Journal of Paleontology, 67: 788-798.

Other Links:

http://onlinelibrary.wiley.com/doi/10.1111/j.1463-6395.2006.00241.x/abstract

Yohoia tenuis

3D animation of Yohoia tenuis.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Unranked clade Megacheira? (stem group arthropods)
Species name: Yohoia tenuis
Remarks:

Yohoia was originally considered to be a branchiopod crustacean (Walcott, 1912; Simonetta, 1970), but was also described as being closely related to the chelicerates (Briggs and Fortey, 1989; Wills et al., 1998; Cotton and Braddy, 2004). Other analyses suggest that Yohoia belongs in the group of “great appendage” arthropods, the Megacheira, together with LeanchoiliaAlalcomenaeus and Isoxys (Hou and Bergström, 1997; Budd, 2002). The megacheirans have been suggested to either be stem-lineage chelicerates (Chen et al. 2004; Edgecombe, 2010), or stem-lineage euarthropods (Budd, 2002).

Described by: Walcott
Description date: 1912
Etymology:

Yohoia – from the Yoho River, Lake, Pass, Glacier, Peak (2,760 m) and Park, British Columbia, Canada. “Yoho” is a Cree word expressing astonishment.

tenuis – from the Latin tenuis, “thin,” referring to its slender body.

Type Specimens: Lectoype –USNM57699 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott, Raymond and Collins Quarries on Fossil Ridge.

History of Research:

Brief history of research:

Yohoia was first described by Walcott (1912), who designated the type species Y. tenuis based on six specimens, and a second species, Y. plena, based on one specimen. Additional specimens of Y. tenuis were described by Simonetta (1970), and a major redescription of Yohoia tenuis was then undertaken by Whittington (1974), based on over 400 specimens of this species. Whittington (1974) invalidated Y. plena, upgrading it to its own genus, Plenocaris plena, leaving Y. tenuis as the only species of YohoiaYohoia has since been included in several studies on arthropod phylogeny and evolution (e.g., Briggs and Fortey, 1989; Hou and Bergström, 1997; Wills et al., 1998; Budd, 2002; Chen et al., 2004; Cotton and Braddy, 2004).

Description:

Morphology:

The body of Yohoia consists of a head region encapsulated in a cephalic shield and 14 body segments, ending in a paddle-shaped telson. The dorsal head shield is roughly square and extends over the dorsal and lateral regions of the head. There is a pair of great appendages at the front of the head. Each appendage consists of two long, thin segments that bend like an elbow at their articulation, with four long spines at the tip. Three pairs of long, thin, segmented appendages project from beneath the head shield behind the great appendages.

The body behind the head consists of ten segments with tough plates, or tergites, that extend over the back and down the side of the animal, ending in backward-facing triangular points. The first of these body segments may have an appendage that is segmented and branches into two (biramous), with a segmented walking limb bearing a flap-like extension. The following nine body segments have only simple flap-shaped appendages fringed with short spines or setae. The next three body segments have no appendages, and the telson is a paddle-shaped plate with distal spines.

Abundance:

Over 700 specimens of Yohoia are known from the Walcott Quarry, comprising 1.3% of the specimens counted (Caron and Jackson, 2008) but only few specimens are known from the Raymond and Collins Quarries.

Maximum Size:
23 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

Yohoia is thought to have used its three pairs of cephalic appendages, and possibly the biramous limb on the first body segment, to walk on the sea floor. The animal could also swim by waving the flap-like appendage on the body trunk. The setae on these appendages may have been used for respiration. The pair of frontal appendages were likely used to capture prey or scavenge food particles from the sea floor.

References:

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CHEN, J. Y., D. WALOSZEK AND A. MAAS. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37: 3-20.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

EDGECOMBE, G. D. 2010. Arthropod phylogeny: An overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure and Development, 39: 74-87.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

SIMONETTA, A. M. 1970. Studies on non trilobite arthropods of the Burgess Shale (Middle Cambrian). Palaeontographia Italica, 66 (New series 36): 35-45.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WHITTINGTON, H. B. 1974. Yohoia Walcott and Plenocaris n. gen. arthropods from the Burges

Other Links:

None

Worthenella cambria

Worthenella cambria (USNM 57643) – Holotype, part and counterpart. Left, plate 22 of Walcott (1911), showing a retouched image of the original specimen described (figure 2) together with other “worms.” Right, images of the same specimen. Specimen length = 60 mm. Specimen wet – direct light (left column), dry – polarized light (right column). Walcott Quarry.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Unranked clade (stem group arthropods)
Species name: Worthenella cambria
Remarks:

This animal is related to arthropods, but its systematic status within this group is unknown (Briggs and Conway Morris, 1986).

Described by: Walcott
Description date: 1911
Etymology:

Worthenella – Possibly after the American palaeontologist Amos Henry Worthen, who died in 1888, just as Walcott’s career was taking off.

cambria – from the Welsh Cambria meaning Wales, in reference to the age of the fossil.

Type Specimens: Holotype –USNM57643 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none

Other deposits: none

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Worthenella was first described by Walcott from a single specimen in a 1911 monograph dealing with various Burgess Shale worms. Walcott interpreted this animal as a polychaete annelid (or bristle worm), in the same family as the animal Wiwaxia (which is now interpreted as a primitive mollusc). However, this interpretation was questioned (Conway Morris, 1979), and the affinities of Worthenella have remained difficult to establish because this singular fossil is too poorly known (Briggs and Conway Morris, 1986).

Description:

Morphology:

The animal is elongate with a small head and bears at least 46 segments of similar dimensions. Appendages or tentacles are present beneath the head, but their preservation is poor and it is difficult to know their precise nature and arrangement. The anterior 34 segments seem to bear filamentous branches on their ventral sides, with the following 8 segments equipped with longer appendages. The gut is straight and the anus is terminal.

Abundance:

This animal is known from a single specimen.

Maximum Size:
60 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

Not enough is known about this organism to interpret its ecology.

References:

BRIGGS, D. E. G. AND S. CONWAY MORRIS. 1986. Problematica from the Middle Cambrian Burgess Shale of British Columbia, p. 167-183. In A. Hoffman and M. H. Nitecki (eds.), Problematic fossil taxa (Oxford Monographs on Geology and Geophysics No. 5). Oxford University Press & Clarendon Press, New York.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

Other Links:

None

Wiwaxia corrugata

3D animation of Wiwaxia corrugata grazing on Morania confluens.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Unranked clade halwaxiids (stem group molluscs)
Species name: Wiwaxia corrugata
Remarks:

The relationship of Wiwaxia is hotly debated; its similarities to the molluscs have been highlighted (Conway Morris, 1985; Scheltema et al., 2003; Caron et al., 2006; Caron et al., 2007), but Matthew’s original view that it was related to the annelid worms (Matthew, 1899) still finds some adherents (Butterfield, 1990; Conway Morris and Peel, 1995; Butterfield, 2006; 2008). It is also possible that Wiwaxia branched off before the molluscs and annelids diverged (Eibye-Jacobsen, 2004). Wiwaxia has recently been placed in a group called the halwaxiids, along with the halkieriids, Orthrozanclus, and Odontogriphus (Conway Morris and Caron, 2007).

Described by: Matthew
Description date: 1899
Etymology:

Wiwaxia – from Wiwaxy Peaks (2,703 m) in Yoho National Park. The word wiwaxy is originally from the Stoney First Nation Nakoda language, meaning “windy.”

corrugata – from the Latin corrugis, “folded, or wrinkled,” in reference to the wrinkled aspect of the sclerites.

Type Specimens: Holotype –ROM8596 in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none described, although sclerites have been reported from a number of Middle Cambrian deposits extending from northern Canada (Butterfield, 1994) to China (Zhao et al., 1994).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge. The Trilobite Beds, Tulip Beds (S7) and Collins Quarry on Mount Stephen. Additional smaller localities are known on Mount Field and Mount Odaray.

History of Research:

Brief history of research:

In an early review of fossils collected from the Trilobite Beds on Mount Stephen by Walker, Canadian palaeontologist G. F. Matthew (1899) described several forms he thought represented tubes of various annelid worms, including one he named Orthotheca corrugata. At the time, Matthew did not know this particular fossil was only part of a much larger organism. It was only when Walcott (1911) discovered articulated and much better preserved specimens from the Phyllopod Bed that the morphology of this species became clearer. Walcott placed corrugata in his new genus Wiwaxia and interpreted it as a polychaete annelid worm (Walcott, 1911). The single best specimen of Walker’s “Orthotheca corrugata” remained unrecognized until it was “rediscovered” in the ROM collections in 1977.

Walcott’s interpretation was called into question in a comprehensive reassessment of the genus (Conway Morris, 1985), and Conway Morris’s link between Wiwaxia mouthparts and the molluscan radula was built upon by Scheltema et al. (2003) and Caron et al. (2006). Butterfield (1990), however, defended an annelid affinity mostly based on the study of individual sclerites, first at the crown-, and later at the stem-group level (Butterfield, 2003; 2006), but further work suggested that the evidence does not conclusively support a close relationship with annelids (Eibye-Jacobsen, 2004). A connection with the halkieriids was drawn early on (Bengtson and Morris, 1984; Conway Morris and Peel, 1995), and expanded more recently (Conway Morris and Caron, 2007).

Other studies have dealt more specifically with the ecology and taphonomy of this animal. The finely spaced patterning of ridges on the scale may have given Wiwaxia an iridescent aspect in life (Parker, 1998). Wiwaxia has proven useful in calculating the extent of decay in fossil assemblages (Caron and Jackson, 2006) and in reconstructing the longer term taphonomic processes responsible for the preservation of the Burgess Shale fossils (Butterfield et al., 2007).

Description:

Morphology:

Wiwaxia corrugata is a slug-like organism up to 5.5 cm in length almost entirely covered (except on the ventral surface) with an array of scale-like elements referred to as sclerites and spines. The body is roughly oval, and lacks evidence of segmentation. The body-covering sclerites are arranged in about 50 rows. In addition, two rows of 7–11 blade-like spines are present on the dorsal surface. Spines and sclerites were inserted directly into the body wall. Wiwaxia’s feeding apparatus consists of two (in rare cases three) toothed plates that have been compared to a molluscan radula or annelid jaws.

Abundance:

Wiwaxia is mostly known from the Walcott Quarry where it is relatively common, representing 0.9% of the specimens counted in the community (Caron and Jackson, 2008).

Maximum Size:
55 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

The similarity of Wiwaxia’s feeding apparatus to that of Odontogriphus suggests that it too fed on the cyanobacterial Morania mats growing on the Cambrian sea floor. Its sclerite armour-plating and long spines, sometimes found broken, suggest that it was targeted by unidentified predators.

References:

BENGSTON, S. AND S. CONWAY MORRIS, 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17:307-329.

BUTTERFIELD, N. J. 1990. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology: 287-303.

BUTTERFIELD, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369(6480): 477-479.

BUTTERFIELD, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43:166-177.

BUTTERFIELD, N. J. 2006. Hooking some stem-group “worms”: fossil lophotrochozoans in the Burgess Shale. BioEssays, 28: 1161-1166.

BUTTERFIELD, N. J. 2008. An early Cambrian radula. Journal of Paleontology, 82(3): 543-554.

CARON, J.-B. AND D. A. JACKSON, 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., A. H. SCHELTEMA, C. SCHANDER AND D. RUDKIN, 2006. A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442(7099): 159-163.

CARON, J.-B., A. H. SCHELTEMA, C. SCHANDER AND D. RUDKIN. 2007. Reply to Butterfield on stem-group “worms:” fossil lophotrochozoans in the Burgess Shale. BioEssays, 29:200-202.

CONWAY MORRIS, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, Series B, 307(1134): 507-582.

CONWAY MORRIS, S. AND J.-B. CARON, 2007. Halwaxiids and the Early Evolution of the Lophotrochozoans. Science, 315(5816): 1255-1258.

CONWAY MORRIS, S. AND J. S. PEEL, 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 347(1321): 305-358.

EIBYE-JACOBSEN, D. 2004. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia, 37(3): 317-335.

MATTHEW, G. F. 1899. Studies on Cambrian Faunas, No. 3. Upper Cambrian fauna, Mount Stephen, British Columbia. The trilobites and worms. Transactions of the Royal Society, 5: 39-66.

PARKER, A. R. 1998. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proceedings of the Royal Society B: Biological Sciences, 265(1400): 967.

SCHELTEMA, A. H., K. KERTH AND A. M. KUZIRIAN, 2003. Original molluscan radula: Comparisons among Aplacophora, Polyplacophora, Gastropoda, and the Cambrian fossil Wiwaxia corrugata. Journal of Morphology, 257(2): 219-245.

WALCOTT, C. D. 1911. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(2): 109-144.

ZHAO, Y.-l., Y. QIAN AND X.-S. LI, 1994. Wiwaxia from Early-Middle Cambrian Kaili Formation in Taijiang, Guizhou. Acta Palaeontologica Sinica, 33:359-366.

Other Links:

http://www.paleobiology.si.edu/burgess/wiwaxia.html

Waputikia ramosa

3D animation of Waputikia ramosa.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Non applicable
Species name: Waputikia ramosa
Remarks:

No revisions of this alga have been published since its original description by Walcott (1919) and its affinities remain uncertain.

Described by: Walcott
Description date: 1919
Etymology:

Waputikia – from the Waputik Icefield, a glacier in Yoho National Park, east of the Burgess Shale.

ramosa – from the Latin ramosus, “full of branches,” in reference to the presence of clumps of branches.

Type Specimens: Syntypes –USNM35409, 35410, 35411 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

This genus was described by Charles Walcott (1919) as a possible red alga. However, like all the algae from the Burgess Shale, it awaits a modern redescription.

Description:

Morphology:

Waputikia has a large central stem with wide branches at irregular intervals. The large branches divide dichotomously (into two), and the smaller tertiary or quaternary branches divide into much finer branches forming small terminal bush-like structures.

Abundance:

Waputikia is very rare and represents only 0.02% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
60 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

No attachment structure for this alga has been preserved but it probably lived attached to the sea floor.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

WALCOTT, C. 1919. Cambrian Geology and Paleontology IV. Middle Cambrian Algae. Smithsonian Miscellaneous Collections, 67(5): 217-260.

Other Links:

None

Wapkia grandis

3D animation of Wapkia elongata and other sponges (Choia ridleyiDiagoniella cyathiformisEiffelia globosaHazelia confertaPirania muricata, and Vauxia bellula) and Chancelloria eros a sponge-like form covered of star-shaped spines.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Demospongia (Order: Monaxonida)
Species name: Wapkia grandis
Remarks:

Wapkia is considered a primitive demosponge (Rigby, 1986). Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Described by: Walcott
Description date: 1920
Etymology:

Wapkia – origin of name is unknown

grandis – from the Latin grandis, “large.” This name refers to the large size and complex skeleton of this sponge.

Type Specimens: Lectotype –USNM66458 (W. grandis), in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. Holotype –ROM53544 (W. elongata), in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: W. elongata Rigby and Collins, 2004 from the Tulip Beds (S7) on Mount Stephen.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge. The Tulip Beds (S7) on Mount Stephen.

History of Research:

Brief history of research:

Wapkia was described by Walcott in his initial description of the Burgess Shale sponges in 1920. The genus was re-examined by Rigby in 1986. Rigby and Collins (2004) also redescribed the genus and proposed a new species, W. elongata.

Description:

Morphology:

Wapkia is a large elongate or oval sponge with bundles of coarse and fine spicules aligned in long vertical columns and distinct horizontal bundles. The surface of the sponge is smooth and lacks any vertical or horizontal ridges. Spicules are straight and pointed at both ends (oxeas). The exact position of the various bundles of spicules in the skeleton is still uncertain, but it seems that the inner part of the skeleton is reticulate with horizontal wrinkles that are typical of the species and produced by horizontal bundles of spicules. The dermal layer is formed by bundles of oxeas up to 60 mm long which give a characteristic plumose aspect to this sponge. W. elongata is distinguished from W. grandis based on the overall shape of the sponge and different skeletal structures (varying distance between the horizontal spicule bundles).

Abundance:

Wapkia is rare and represents only 0.06% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
170 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

Wapkia would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None

Walcottidiscus typicalis

Walcottidiscus typicalis (GSC 45368). Complete but poorly preserved specimen. Specimen diameter = 18 mm. Specimen dry – direct light. Walcott Quarry.

© GEOLOGICAL SURVEY OF CANADA. PHOTO: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Edrioasteroidea (Order: Edrioasteroida, stem group echinoderms)
Species name: Walcottidiscus typicalis
Remarks:

Walcottidiscus is a poorly known edrioasteroid, an extinct group of echinoderms (Smith, 1985).

Described by: Bassler
Description date: 1935
Etymology:

Walcottidiscus – from Charles Walcott, the discoverer of the Burgess Shale, and the Greek diskos, “disc.” The name refers to the flattened appearance of the fossils.

typicalis – from the Greek typikos, “type,” perhaps in reference to the single specimen originally described.

Type Specimens: Holotype –USNM90754 (W. typicalis),USNM90755 (W. magister) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: W. magister Bassler, 1935 from the Walcott Quarry on Fossil Ridge (but see below paragraph brief history of research).

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Two species known from a single specimen each were originally described by Bassler in 1935 and 1936: a small form W. typicalis, and a larger form W. magister respectively. However, W. magister is now thought to belong to W. typicalis (Smith, 1985) but additional fossil material would be required to confirm this hypothesis. Walcottidiscus resembles Kailidiscus chinensis, a chinese form from the Middle Cambrian Kaili deposit, but remains too poorly known to draw more detailed comparisons between the two genera (Zhao et al., 2010).

Description:

Morphology:

The body (theca) is ovoid in outline and has a relatively small dorsal surface compared to the ventral one. The upper central part of the theca is not calcified, but the outer zone is composed of small calcified plates. A five star-shaped food groove lined with small plates (the ambulacra) is present on the upper surface. The five arms of the ambulacra are arranged in a 2:1:2 fashion around the mouth, and they are at first straight and then turn to the left near the edge of the theca. Differences between the two species are the size and degree of ambulacral curvature, but those differences could simply be a factor of growth.

Abundance:

Walcottidiscus is very rare only two specimens were originally described. A few additional specimens are known in the Burgess Shale collections of the Geological Survey of Canada and the Royal Ontario Museum.

Maximum Size:
64 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

Walcottidiscus was most likely resting on the seafloor. Food particles were transported by food grooves (ambulacrum) into a central mouth at the top of the theca.

References:

BASSLER, R. S. 1935. The classification of the Edrioasteroidea. Smithsonian Miscellaneous Collections, 93: 1-11.

BASSLER, R. S. 1936. New species of American Edrioasteroidea. Smithsonian Miscellaneous Collections, 95: 1-33.

SMITH, A. B. 1985. Cambrian eleutherozoan echinoderms and the early diversification of edrioasteroids. Palaeontology, 28: 715-756.

ZHAO, Y., C. D. SUMRALL, R. L. PARSLEY AND J. I. N. PENG. 2010. Kailidiscus, a new plesiomorphic edrioasteroid from the basal Middle Cambrian Kaili biota of Guizhou province, China. Journal of Paleontology, 84: 668-680.

Other Links:

None

Wahpia insolens

Wahpia insolens (USNM 35424) – Syntype. Specimen showing typical mode of branching. Specimen length = 90 mm. Specimen wet – direct light (left), polarized light (right). Trilobite Beds on Mount Stephen.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Photo
Phylum: Photo
Higher Taxonomic assignment: Non applicable
Species name: Wahpia insolens
Remarks:

No revisions of this alga have been published since its original description by Walcott (1919) and its affinities remain uncertain.

Described by: Walcott
Description date: 1919
Etymology:

Wahpia – unspecified.

insolens – from the Latin insolens, “unusual, different.” This probably refers to the unusual branches of this alga.

Type Specimens: Syntypes –USNM35423-35424 (W. insolens); Holotypes –USNM35413 (W. mimica);USNM35425 (W. virgata) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: W. mimica Walcott, 1919 and W. virgata Walcott, 1919 from the Walcott Quarry.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge. The Trilobite Beds on Mount Stephen.

History of Research:

Brief history of research:

Wahpia was described by Charles Walcott (1919) as a possible red alga. However, like all the algae from the Burgess Shale, it awaits a modern redescription.

Description:

Morphology:

This simple alga has a long central stem with long narrow branches diverging from it at a 45 degree angle; these branches give rise to smaller branches with up to two additional branchings. The central stem is hollow. W. mimica and W. virgata differ from W. insolens based on size differences of the central stem and the number and flexibility of the branches.

Abundance:

Wahpia is very rare and represents only 0.06% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
90 mm

Ecology:

Life habits: Photo
Feeding strategies: Photo
Ecological Interpretations:

The morphology of this alga suggests it was attached to the sea floor rather than being free floating.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

WALCOTT, C. 1919. Cambrian Geology and Paleontology IV. Middle Cambrian Algae. Smithsonian Miscellaneous Collections, 67(5): 217-260.

Other Links:

None