The Burgess Shale

Hurdia victoria

3D animation of Hurdia victoria.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Class: Dinocarida (Order: Radiodonta, stem group arthropods)
Remarks:

Hurdia is an anomalocaridid, and is usually considered to represent either a basal stem-lineage euarthropod (e.g. Daley et al., 2009), a member of the crown-group arthropods (e.g. Chen et al., 2004), or a sister group to the arthropods (Hou et al., 2006).

Species name: Hurdia victoria
Described by: Walcott
Description date: 1912
Etymology:

Hurdia – from Mount Hurd (2,993 m), a mountain northeast of the now defunct Leanchoil railway station on the Canadian Pacific Railway in Yoho National Park. The peak was named by Tom Wilson for Major M. F. Hurd, a CPR survey engineer who explored the Rocky Mountain passes starting in the 1870s.

victoria – unspecified; perhaps from Mount Victoria (3,464 m) on the border of Yoho and Banff National Parks, named by Norman Collie in 1897 to honour Queen Victoria.

Type Specimens: Lectotypes –USNM57718 (H. victoria) andUSNM57721 (H. triangulata) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: Hurdia triangulata.

Other deposits: Potentially other species are represented in Utah (Wheeler Formation) (Briggs et al., 2008), the Jince Formation in the Czech Republic (Chlupáč and Kordule 2002) and the Shuijingtuo Formation in Hubei Province, China (Cui and Huo, 1990) and possibly Nevada (Lieberman, 2003).

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott, Raymond and Collins Quarries on Fossil Ridge. Also known from other localities on Mount Field, Mount Stephen – Tulip Beds (S7) – and near Stanley Glacier.

History of Research:

Brief history of research:

Hurdia is a relative newcomer to the anomalocaridids. Although isolated parts of its body were first identified in the early 1900s, no affinity could be determined until the description of whole body specimens by Daley et al. in 2009. Hurdia victoria was the name originally given to an isolated triangular carapace that Walcott (1912) suggested belonged to an unknown arthropod. Proboscicaris, another isolated carapace, was originally described as a phyllopod arthropod (Rolfe, 1962). Hurdia’s frontal appendages were first described by Walcott (1911a) as the feeding limbs of Sidneyia, but were later removed from this genus and referred to as “Appendage F” with unknown affinity (Briggs, 1979).

Like other anomalocaridids, the mouth parts were first described as the jellyfish Peytoia nathorsti (Walcott, 1911b). When Whittington and Briggs (1985) discovered the first whole body specimens of Anomalocaris, the mouth part identity of Peytoia was recognized and “Appendage F” was determined to be the frontal appendage of Anomalocaris nathorsti (later renamed Laggania cambria by Collins (1996). When describing Anomalocaris, Whittington and Briggs (1985) also figured a mouth apparatus with extra rows of teeth.

After two decades of collecting at the Burgess Shale, Desmond Collins from the Royal Ontario Museum (ROM) discovered that this extra-spiny mouth part actually belonged to a third type of anomalocaridid, which also had an “Appendage F” pair and a frontal carapace structure consisting of one Hurdia carapace and two Proboscicaris carapaces (Daley et al., 2009). This is the Hurdia animal. ROM specimens of “Appendage F” showed that it has three distinct morphologies, two of which belongs to the Hurdia animal (known from two species, victoria and triangulata) and one to Laggania cambria.

Description:

Morphology:

Hurdia has a bilaterally symmetrical body that is broadly divisible into two sections of equal lengths. The anterior region is a complex of non-mineralized carapaces consisting of one dorsal triangular H-element (previously called Hurdia) and two lateral subrectangular P-elements (or Proboscicaris). This complex is hollow and open ventrally. It attaches near the anterior margin of the head and protrudes forward. The surfaces of the H- and P-elements are covered in a distinctive polygonal pattern similar to that seen on Tuzoia carapaces. A pair of oval eyes on short stalks protrudes upwards through dorsal-lateral notches in the overlapping posterior corners of the H- and P-elements.

Mouth parts are on the ventral surface of the head, and consist of a circlet of 32 tapering and overlapping plates, 4 large and 28 small, with spines lining the square inner opening. Within the central opening are up to five inner rows of toothed plates. A pair of appendages flanks the mouth part, each with nine thin segments with short dorsal spines and seven elongated ventral spines. The posterior half of the body consists of a series of seven to nine reversely imbricated lateral lobes that extend ventrally into triangular flaps. Dorsal surfaces of the lateral lobes are covered in a series of elongated blades interpreted to be gill structures. The body terminates abruptly in two rounded lobes, and lacks a tailfan. Complete specimens are up to 20 cm in length, although disarticulated fragments may suggest a larger body size up to 50 cm long. Hurdia triangulata differs from Hurdia victoria by having a wider and shorter H-element.

Abundance:

Over 700 specimens of Hurdia have been identified, most of which are disarticulated. Hurdia is found in all Burgess Shale quarries on Fossil Ridge, and is particularly abundant in Raymond Quarry, where it makes up almost 1% of the community (240 specimens). A total of 7 complete body specimens exist.

Maximum Size:
500 mm

Ecology:

Ecological Interpretations:

Hurdia was likely nektonic, since there are no trunk limbs for walking, and the numerous gills suggest an active swimming lifestyle. The animal propelled itself through the water column by waving its lateral lobes and gills. The large eyes, prominent appendages and spiny mouth parts suggest that Hurdia actively sought out moving prey items. Although the function of the frontal carapace remains unknown, it may have played a role in prey capture. If Hurdia were swimming just above the sea floor, it could have used the tip of its frontal carapace to stir up sediment and dislodge prey items, which would then be trapped beneath its frontal carapace. Prey items were funneled towards the mouth by a sweeping motion of the long ventral blades of the frontal appendages, which formed a rigid net or cage. Like other anomalocaridids, Hurdia likely ingested soft-bodied prey.

References:

BRIGGS, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22: 631-663.

BRIGGS, D. E. G., B. S. LIEBERMAN, J. R. HENDRICK, S. L. HALGEDAHL AND R. D. JARRARD. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82: 238-254.

CHEN, J. Y., D. WALOSZEK AND A. MAAS. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37: 3-20.

CHLUPÁČ, I. AND V. KORDULE. 2002. Arthropods of Burgess Shale type from the Middle Cambrian of Bohemia (Czech Republic). Bulletin of the Czech Geological Survey, 77: 167-182.

COLLINS, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov) and order Radiodonta (nov). Journal of Paleontology, 70: 280-293.

CUI, Z. AND S. HUO. 1990. New discoveries of Lower Cambrian crustacean fossils from Western Hubei. Acta Palaeontologica Sinica, 29: 321-330.

DALEY, A. C., G. E. BUDD, J. B. CARON, G. D. EDGECOMBE AND D. COLLINS. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science, 323: 1597-1600.

HOU, X., J. BERGSTRÖM AND P. AHLBERG. 1995. Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of Southwest China. GFF, 117: 163-183.

HOU, X., J. BERGSTRÖM AND Y. JIE. 2006. Distinguishing anomalocaridids from arthropods and priapulids. Geological Journal, 41: 259-269.

LIEBERMAN, B. S. 2003. A new soft-bodied fauna: The Pioche Formation of Nevada. Journal of Paleontology, 77: 674-690.

ROLFE, W. D. I. 1962. Two new arthropod carapaces from the Burgess Shale (Middle Cambrian) of Canada. Breviora Museum of Comparative Zoology, 60: 1-9.

WALCOTT, C. D. 1911a. Middle Cambrian Merostomata. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57: 17-40.

WALCOTT, C. D. 1911b. Middle Cambrian holothurians and medusae. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57: 41-68.

WALCOTT, C. D. 1912. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57: 145-228.

WHITTINGTON, H. B. AND D. E. G. BRIGGS. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British-Columbia. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 309: 569-609.

Other Links:

Hazelia palmata

3D animation of Hazelia conferta and other sponges (Choia ridleyi, Diagoniella cyathiformis, Eiffelia globosa, Pirania muricata, Vauxia bellula, and Wapkia elongata) and Chancelloria eros a sponge-like form covered of star-shaped spines.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Class: Demospongea (Order: Monaxonida)
Remarks:

Hazelia is considered a primitive demosponge, close to Falospongia and Crumillospongia (Rigby, 1986). Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Species name: Hazelia palmata
Described by: Walcott
Description date: 1920
Etymology:

Hazelia – from Hazel Peak (3,151 m), the older name for Mount Aberdeen, located 4 km SSW of Lake Louise in Banff National Park, Alberta. Mount Aberdeen was named in honor of Lord Gordon in 1897, the Marquis of Aberdeen and the Governor General of Canada from 1893 to 1898.

palmata – from the Latin palm, “palm of the hand,” referring to the broad cup-shape of this sponge and its resemblance to a cupped hand.

Type Specimens: Lectotypes – USNM 66463 (H. palmata – type species), 66465 (H. delicatula), USNM 66505 (H. dignata), USNM 66473 (H. grandis), USNM 66474 (H. nodulifera), USNM 66472 (H. obscura); Holotypes – USNM 66476 (H. conferta), USNM 66779 (H. crateria), USNM 66475 (H. luteria) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. Holotype –ROM53573 (H. lobata) in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: H. conferta Walcott, 1920, H. crateria Rigby, 1986, H. delicatula Walcott, 1920, H. dignata Walcott, 1920, H. grandis Walcott, 1920, H. lobata Rigby and Collins, 2004, H. luteria Rigby, 1986, H. nodulifera Walcott, 1920, H. obscura Walcott, 1920. Most species known from the Walcott Quarry (See Rigby, 1986 and Rigby and Collins, 2004).

Other deposits: H. walcotti (Resser and Howell, 1938) from the Early Cambrian Kinzers Formation of Pennsylvania (See Rigby, 1987).

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone to Bolaspidella Zone (approximately 505 million years ago).
Principal localities:

Burgess Shale and vicinity: Hazelia is particularly common in the Walcott Quarry and is less common in the Raymond and Collins Quarries on Fossil Ridge. Many species also occur on Mount Stephen at the Trilobite Beds, Tulip Beds (S7), and other smaller localities.

Other deposits: H. palmata Walcott, 1920 from the Middle Cambrian Marjum Formation (Rigby et al., 1997).

History of Research:

Brief history of research:

Walcott described seven species of Hazelia in his 1920 paper on the Burgess Shale sponges. The genus was redescribed by Rigby in 1986 when two new species were added and one excluded from the genus (H. mammillata now referred to Moleculospina mammillata). Rigby and Collins (2004) added another species based on new material collected by the Royal Ontario Museum.

Description:

Morphology:

Species of Hazelia have a large variation in morphology with wide cup-shaped forms (H. palmata, H. crateria, H. luteria), long cone-shaped forms (H. conferta, H. grandis, H. obscura), branched forms (H. delicatula, H. dignata), and nodular to lobate forms (H. lobata, H. nodulifera). While there is this significant variety of overall shapes, the different species of Hazelia have a common microstructure. The walls are thin and composed of small tightly packed simple spicules that form a net-like structure and diverge outwards producing a plumose pattern. The walls are perforated with small canals to allow water flow. The base of each sponge would have had a small attachment structure.

In addition to its open shield-like shape, H. palmata possesses distinct radial tracts of spicules which go beyond the margins of the sponge for at least a couple of millimeters.

Abundance:

Hazelia is very common in the Walcott Quarry and represents 9.5% of the community (Caron and Jackson, 2008).

Maximum Size:
150 mm

Ecology:

Ecological Interpretations:

Hazelia would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 105 p.

RIGBY, J. K. 1987. Early Cambrian sponges from Vermont and Pennsylvania, the only ones described from North America. Journal of Paleontology, 61: 451-461.

RIGBY, J. K. L. F. GUNTHER AND F. GUNTHER. 1997. The first occurrence of the Burgess Shale Demosponge Hazelia palmata Walcott, 1920, in the Cambrian of Utah. Journal of Paleontology, 71: 994-997.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None

Haplophrentis carinatus

3D animation of Haplophrentis carinatus.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Class: Hyolitha (Order: Hyolithida, stem group molluscs)
Remarks:

Haplophrentis belongs to a group of enigmatic cone-shaped to tubular fossils called hyoliths that are known only from the Palaeozoic. Their taxonomic position is uncertain, but the Hyolitha have been regarded as a separate phylum, an extinct Class within Mollusca (Malinky and Yochelson, 2007), or as stem-group molluscs.

Species name: Haplophrentis carinatus
Described by: Matthew
Description date: 1899
Etymology:

Haplophrentis – from the Greek haploos, “single,” and phrentikos, “wall,” in reference to the single wall within the shell.

carinatus – from the Latin carinatus, “keel-shaped,” referring to the morphological similarity to the bottom of a boat.

Type Specimens: Lectotype –ROM8463a in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: none

Other deposits: H. reesei Babcock & Robinson, 1988 (type species), from the lower Middle Cambrian Spence Shale and elsewhere in Utah; H.? cf. carinatus from the Middle Cambrian Kaili deposit in China (Chen et al., 2003).

Age & Localities:

Period:
Middle Cambrian, Albertella Zone to Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott, Raymond and Collins Quarries on Fossil Ridge, the Trilobite Beds on Mount Stephen and Stanley Glacier in Kootenay National Park.

History of Research:

Brief history of research:

Matthew described Hyolithes carinatus from the Trilobite Beds in 1899 based on five incomplete specimens. Babcock and Robison (1988) reviewed the original fossils, along with additional specimens collected by the Royal Ontario Museum from various Burgess Shale localities. They concluded that the species carinatus didn’t belong in Hyolithes, and established a new genus, Haplophrentis, to accommodate it.

Description:

Morphology:

Like all hyoliths, Haplophrentis had a weakly-mineralized skeleton that grew by accretion, consisting of a conical living shell (conch), capped with a clam-like “lid” (operculum), with two slender, curved and rigid structures known as “helens” protruding from the shell’s opening. The function of these helens is still debated, but one possibility was to allow settlement and stabilization on the sea floor. Haplophrentis had a wiggly gut whose preserved contents are similar to the surrounding mud.

H. carinatus usually grew to around 25 mm in length, although some specimens reached as much as 40 mm; the species is distinguished from H. reesei, its cousin from Utah, by the faint grooves on its upper surface, the more pronounced net-like pattern on its “lid” (operculum), and its wider, more broadly-angled living shell (conch).

Haplophrentis can be distinguished from the similar hyolith genus Hyolithes because it bears a longitudinal wall running down the inner surface of the top of its living-shell.

Abundance:

Haplophrentis is relatively common on Fossil Ridge and in the Walcott Quarry in particular, accounting for 0.35% of the community there (Caron and Jackson, 2008).

Maximum Size:
40 mm

Ecology:

Ecological Interpretations:

Haplophrentis probably moved very little; its helens appear unsuited for use in locomotion (See Butterfield and Nicholas, 1996; Martí Mus and Bergström, 2005; Runnegar et al., 1975). Whilst Haplophrentis feeding mode remains somewhat conjectural, it probably consumed small organic particles from the seafloor. Numerous specimens have been found in aggregates or in the gut of the priapulid worm Ottoia prolifica suggesting Haplophrentis was actively preyed upon and ingested (Conway Morris, 1977; Babcock and Robison, 1988).

References:

BABCOCK, L. E. AND R. A. ROBISON. 1988. Taxonomy and paleobiology of some Middle Cambrian Scenella (Cnidaria) and hyolithids (Mollusca) from western North America. University of Kansas Paleontological Contributions, Paper, 121: 1-22.

BUTTERFIELD, N. J. AND C. NICHOLAS. 1996. Burgess Shale-type preservation of both non-mineralizing and “shelly” Cambrian organisms from the Mackenzie Mountains, Northwestern Canada. Journal of Paleontology, 70: 893-899.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CHEN, X. Y. ZHAO AND P. WANG. 2003. Preliminary research on hyolithids from the Kaili Biota, Guizhou. Acta Micropalaeontologica Sinica, 20: 296-302.

CONWAY MORRIS, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology, 20: 1-95.

MALINKY, J. M. AND E. L. YOCHELSON. 2007. On the systematic position of the Hyolitha (Kingdom Animalia). Memoir of the Association of Australasian Palaeontologists, 34: 521-536.

MARTÍ MUS, M. AND J. BERGSTRÖM. 2005. The morphology of hyolithids and its functional implications. Palaeontology, 48:1139-1167.

MATTHEW, G. F. 1899. Studies on Cambrian faunas, No. 3. Upper Cambrian fauna of Mount Stephen, British Columbia. The trilobites and worms. Transactions of the Royal Society of Canada, Series 2, 4: 39-66.

RUNNEGAR, B., J. POJETA, N. J. MORRIS, J. D. TAYLOR, M. E. TAYLOR AND G. MCCLUNG. 1975. Biology of the Hyolitha. Lethaia, 8: 181-191.

Other Links:

Hallucigenia sparsa

3D animation of Hallucigenia sparsa.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Class: Xenusia (Order: Scleronychophora, stem group onychophorans)
Remarks:

Hallucigenia is regarded as a member of the “lobopodans,” a group of vermiform Cambrian organisms possessing pairs of leg-like extensions of the body. The affinities of these animals are controversial; they have been placed at the base of a clade comprised of anomalocaridids and arthropods (Budd, 1996), or in a stem-group to modern onychophorans (Ramsköld and Chen, 1998).

Species name: Hallucigenia sparsa
Described by: Walcott
Description date: 1911
Etymology:

Hallucigenia – from the Latin hallucinatio, “wandering of the mind,” after the bizarreness of the animal.

sparsa – from the Latin sparsus, “rare, or scattered,” reflecting the rarity of the specimens available in the original study.

Type Specimens: Holotype –USNM83935 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: H. fortis from the Middle Cambrian Chengjiang biota (Hou and Bergström 1995).

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge. The Tulip Beds (S7) on Mount Stephen.

History of Research:

Brief history of research:

Hallucigenia was originally described as “Canadia sparsa” by Walcott (1911) in a review of various Burgess Shale “annelids.” One specimen was illustrated twenty years later (Walcott, 1931), but the first thorough study of this animal wasn’t published until Conway Morris (1977) demonstrated that it did not belong to the genus Canadia or to the annelids at all. His reconstruction showed a bizarre animal walking on spines, with dorsal tentacles interpreted as a feeding apparatus (Conway Morris, 1977). The new genus name Hallucigenia was coined in reference to this “dreamlike” appearance and also reflected the organism’s uncertain affinities. It was later shown that the supposed tentacles represented just one row of paired “legs” – the others were buried under a layer of rock and the paired spines were on the dorsal surface (Ramsköld and Hou, 1991, Ramsköld, 1992). The anteroposterior orientation was also reversed, with the former head interpreted as possible decay fluids seeping from the body (Ramsköld, 1992).

Description:

Morphology:

Hallucigenia has a worm-like body with a small head at the end of a long neck; the trunk bears seven pairs of long dorsal spines and seven pairs of slender leg-like lobes. The spacing between lobes and spines is relatively constant. The spine pairs are shifted forward so that the posterior pair of legs does not have a corresponding pair of spines above. Each leg terminates in a pair of claws and the rigid spines have inflexible basal plates. The neck area bears two or three pairs of very fine anterior “appendages” lacking terminal claws. The head is indistinct but the mouth is anterior; a straight gut ends in a posterior anus. It is possible the posterior end is in fact more bulbous than previously thought.

Abundance:

About thirty specimens were studied by Conway Morris (1977). Overall, Hallucigenia is rare, and in the Walcott Quarry it represents 0.19% of the specimens counted in the community (Caron and Jackson, 2008).

Maximum Size:
30 mm

Ecology:

Ecological Interpretations:

Hallucigenia is often found in association with the sponge Vauxia and other organic debris. This co-occurrence has led to suggestions that Hallucigenia fed on sponges, using its clawed legs to hang on, with its spines protecting it from predation. It is also possible that Hallucigenia scavenged on decaying animal remains.

References:

BUDD, G. E. 1996. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia, 29: 1-14.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. 1977. A new metazoan from the Burgess Shale of British Columbia. Palaeontology, 20: 623-640.

CONWAY MORRIS, S. 1999. The crucible of creation: the Burgess Shale and the rise of animals. Oxford University Press, USA.

HOU, X. AND J. A. N. BERGTRÖM. 1995. Cambrian lobopodians – ancestors of extant onychophorans? Biological Journal of the Linnean Society, 114(1): 3-19.

RAMSKÖLD, L. 1992. The second leg row of Hallucigenia discovered. Lethaia, 25(2): 221–224.

RAMSKÖLD, L. AND X. HOU. 1991. New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature, 351: 225-228.

RAMSKÖLD, L. AND J. Y. CHEN. 1998. Cambrian lobopodians: morphology and phylogeny, p. 107-150. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Volume 29. Columbia University Press, New York.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

WALCOTT, C. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85(3): 1-46.

Other Links:

Pirania muricata

3D animation of Pirania muricata and other sponges (Choia ridleyi, Diagoniella cyathiformis, Eiffelia globosa, Hazelia conferta, Vauxia bellula, and Wapkia elongata) and Chancelloria eros a sponge-like form covered of star-shaped spines.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Class: Demospongea (Order: Monaxonida)
Remarks:

Pirania is considered a primitive demosponge (Rigby, 1986). Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Species name: Pirania muricata
Described by: Walcott
Description date: 1920
Etymology:

Pirania – from Mount Saint Piran (2,649 m), situated in the Bow River Valley in Banff National Park, Alberta. Samuel Allen named Mount St. Piran after the Patron Saint of Cornwall in 1894.

muricata – from the Latin muricatus, “pointed, or full of sharp points.” The name refers to the large pointed spicules extending out from the wall of the sponge.

Type Specimens: Lectotype –USNM66495 (erroneously referred as 66496 in Rigby, 1986), in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none

Other deposits: Pirania auraeum Botting, 2007 from the Lower Ordovician of Morocco (Botting, 2007); Pirania llanfawrensis Botting, 2004 from the Upper Ordovician of England (Botting, 2004).

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge. The Trilobite Beds and Tulip Beds (S7) on Mount Stephen and several smaller sites on Mount Field, Mount Stephen and Mount Odaray.

History of Research:

Brief history of research:

Pirania was first described by Walcott (1920). Rigby (1986) redescribed this sponge and concluded that the skeleton is composed of hexagonally arranged canals, large pointed spicules and tufts of small spicules. This sponge was also reviewed by Rigby and Collins based on new material collected by the Royal Ontario Museum (2004).

Description:

Morphology:

Pirania is a thick-walled cylindrical sponge that can have up to four branches. The skeleton of the sponge is composed of tufts of small spicules and has very distinctive long pointed spicules that emerge from the external wall. Long canals perforate the wall of the sponge to allow water flow through it. Branching occurs close to the base of the sponge.

Abundance:

Pirania is common in most Burgess Shale sites but comprises only 0.38% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
30 mm

Ecology:

Ecological Interpretations:

Pirania would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall. The brachiopods Nisusia and Micromitra a range of other sponges and even juvenile chancelloriids are often found attached to the long spicules of this sponge, possibly to avoid higher turbidity levels near the seafloor.

References:

BOTTING, J. P. 2004. An exceptional Caradoc sponge fauna from the Llanfawr Quarries, Central Wales and phylogenetic implications. Journal of Systematic Paleontology, 2: 31-63.

BOTTING, J. P. 2007. ‘Cambrian’ demosponges in the Ordovician of Morocco: insights into the early evolutionary history of sponges. Geobios, 40: 737-748.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None

Pikaia gracilens

3D animation of Pikaia gracilens.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Class: Unranked clade (stem group chordates)
Remarks:

Pikaia is considered to represent a primitive chordate (Conway Morris, 1979; Conway Morris et al., 1982) possibly close to craniates (Janvier, 1998); a stem-chordate (Smith et al., 2001); or a cephalochordate (Shu et al., 1999). Its exact position within the chordates is still uncertain and this animal awaits a full redescription.

Species name: Pikaia gracilens
Described by: Walcott
Description date: 1911
Etymology:

Pikaia – from the pika, a small alpine mammal and cousin of the rabbits. Pikas live in the Rocky Mountains, including near the Burgess Shale.

gracilens – from the Latin gracilens, “thin, simple,” in reference to the shape of the body.

Type Specimens: Syntypes –USNM57628b, 57629 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Pikaia was first described by Walcott based on a couple of specimens in a 1911 monograph dealing with various Burgess Shale worms. Two additional specimens were figured in a posthumous publication (Walcott, 1931). Walcott placed Pikaia in a now defunct group called the Gephyrea with other vermiform fossils such as BanffiaOttoia and OesiaPikaia was later considered to be a primitive chordate (Conway Morris, 1979; Conway Morris et al., 1982), an interpretation which has since been followed to some degree in most discussions about early chordate evolution (e.g., Janvier, 1998). Pikaia played a major part in Gould’s interpretations of the Burgess Shale fossils in Wonderful Life (Gould, 1989; see also Briggs and Fortey, 2005). A full redescription of this animal is currently under way (Conway Morris and Caron, in prep.).

Description:

Morphology:

Pikaia resembles Metaspriggina in outline, another chordate animal from the Burgess Shale, with an elongate body and a small anterior region bearing the head. The body is laterally flattened and there is evidence of a ventral fin towards the posterior. Numerous V-shaped or ziz-zag segments interpreted as myomeres or muscle bands are visible in all specimens. A narrow dorsal structure which runs down the length of the organism might represent a notochord, but this interpretation remains to be confirmed. The head bears two equal lobes and a pair of short and slender tentacle-like structures. There is no evidence of eyes. Just behind the head, on the ventral side of the body, there is a series of up to twelve pairs of small, short, pointed structures on either side of the midline. These are thought to be related to gill openings. The gut is narrow and the anus is terminal.

Abundance:

Pikaia is relatively rare, known from more than 60 specimens, all from the Walcott Quarry where it represents 0.03% of the specimens counted in the community (Caron and Jackson, 2008).

Maximum Size:
55 mm

Ecology:

Ecological Interpretations:

The eel-like morphology and musculature of the animal suggest that it was likely free-swimming, although it probably spent time on the sea floor. The tentacles may have had a sensory function, and the presence of mud in its gut suggests that Pikaia was potentially a deposit feeder.

References:

BRIGGS, D. E. G. AND R. A. FORTEY. 2005. Wonderful strife: Systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology, 31(SUPPL.2 ): 94-112.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. H. B. WHITTINGTON, D. E. G. BRIGGS, C. P. HUGHES AND D. L. BRUTON. 1982. Atlas of the Burgess Shale. Palaeontological Association, 31 p. + 23 pl.

GOULD, S. J. 1989. Wonderful Life. The Burgess Shale and the Nature of History. Norton, New York, 347 p.

JANVIER, P. 1998. Les vertébrés avant le Silurien. GeoBios, 30: 931-950.

SHU, D.-G,. H. L. LUO, S. CONWAY MORRIS, X. L. ZHANG, S. X. HU, L. CHEN, J. HAN, M. ZHU, Y. LI AND L. Z. CHEN. 1999. Lower Cambrian vertebrates from south China. Nature, 402(4 November 1999): 42-46.

SMITH, M. P., I. J. SANSOM AND K. D. COCHRANE. 2001. The Cambrian origin of vertebrates, p. 67-84. In P. E. Ahlberg (ed.), Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, Genetics and Development. Taylor and Francis, London.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

WALCOTT, C. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85(3): 1-46.

Other Links:

http://paleobiology.si.edu/burgess/pikaia.html

Eldonia ludwigi

3D animation of Eldonia ludwigi.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Class: Unranked clade Cambroernida (stem group ambulacrarians)
Remarks:

Eldonia, together with other discoidal or pedunculate fossils such as Herpetogaster, probably belongs in the stem group to a clade known as the Ambulacraria, represented by both echinoderms and hemichordates (Caron et al., 2010).

Species name: Eldonia ludwigi
Described by: Walcott
Description date: 1911
Etymology:

Eldonia – from Eldon, a train stop on the Canadian Pacific Railway 30 km east of Field. Eldon is named after a town in County Durham, England, and means “Aelle’s hill.”

ludwigi – after Hubert Ludwig, a German echinoderm expert who described many fossil holothurians.

Type Specimens: Lectotype –USNM57540 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: Stellostomites eumorphus (Sun and Hou, 1987), from the Lower Cambrian Chengjiang fauna, was redescribed as Eldonia eumorpha (Chen et al., 1995). However, S. eumorphus is retained in the literature as the only valid species (Zhu et al. 2002); E. berbera was described from the Upper Ordovician of Morocco (Alessandrello and Bracchi, 2003). If confirmed it would be the youngest stratigraphic occurrence for the genus.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone to Bolaspidella Zone (approximately 505 million years ago).
Principal localities:

Burgess Shale and vicinity: Walcott and Raymond Quarries on Fossil Ridge.

Other deposits: Middle Cambrian Spence Shale and Marjum Formation in Utah (Conway Morris and Robison, 1988).

History of Research:

Brief history of research:

Described by Walcott in 1911, Eldonia was originally interpreted as a holothurian (sea cucumber within the echinoderms), a view that was accepted by some eminent experts at the time (Clark A.H., 1913) and upheld by later re-examination of the material (Durham, 1974). However, this interpretation has always had detractors (Clark H.L., 1912; Dzik, 1991, 1997; Madsen, 1956, 1957, 1962; Paul and Smith, 1984), and the lack of key echinoderm features prohibits a close relationship with that group (Conway Morris, 1993; see also Zhu et al., 2002). Despite their resemblance to jellyfish (scyphozoans) there is a wide consensus that eldoniids do not share any affinities with cnidarians. A connection to “lophophorates” (e.g., brachiopods, phoronids) has been argued in more detail (Chen et al., 1995, Dzik, 1997), but this status remains rather problematic. The description of Eldonia’s close relative Herpetogaster provides a possible link to the Ambulacraria, a group that contains the echinoderms and hemichordates (Caron and Conway Morris, 2010).

Fragments of the reflective gut have been extracted by acid maceration and analyzed for taphonomic studies (Butterfield, 1990).

Description:

Morphology:

Eldonia has a discoidal body with both anus and mouth opening ventrally. Fine rays radiate from a central point within the disc. The gut coils clockwise (viewed from the dorsal surface) around the centre of the organism and is clearly separated into a pharynx, stomach (the darker area), and narrow intestine. There is a pair of relatively stout tentacles around the mouth which probably were used for feeding.

Abundance:

Walcott collected hundreds of specimens of Eldonia in a single fossil layer within the Phyllopod Bed that he called the Great Eldonia Layer. Additional specimens have since been collected from the Walcott Quarry, where they comprise 0.4% of the community (Caron and Jackson, 2008).

Maximum Size:
150 mm

Ecology:

Ecological Interpretations:

Eldonia has conventionally been interpreted as a free-floating filter-feeder. However, based on its morphology, preservational patterns, and its similarity with Herpetogaster, a benthic lifestyle has also been proposed, with its tentacles either collecting food from the water, or sweeping the sea floor for particles of detritus (Caron and Conway Morris, 2010). It is unclear whether the animal could move at least occasionally or was permanently stationary (sessile).

References:

ALESSANDRELLO, A. AND G. BRACCHI. 2003. Eldonia berbera n. sp. a new species of the enigmatic genus Eldonia Walcott, 1911 from the Rawtheyan (Upper Ordovician) of Anti-Atlas (Erfoud, Tafilalt, Morocco). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale in Milano, 144(2): 337-358.

BUTTERFIELD, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16(3): 272-286.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., S. CONWAY MORRIS AND D. SHU. 2010. Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS ONE, 5(3): e9586.

CHEN, J.-Y., M.-Y. ZHU AND G.-Q. ZHOU. 1995. The early Cambrian medusiform metazoan Eldonia from the Chengjiang Lagerstätte. Acta Palaeontologica Polonica, 40: 213-244.

CLARK, H. L. 1912. Fossil holothurians. Science, 35(894): 274-278.

CLARK, A. H. 1913. Cambrian holothurians. American Naturalist, 48: 488-507.

CONWAY MORRIS, S. AND R. A. ROBISON. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions, 122: 23-84.

CONWAY MORRIS, S. 1993. The fossil record and the early evolution of the Metazoa. Nature, 361(6409): 219-225.

DURHAM, J. W. 1974. Systematic Position of Eldonia ludwigi Walcott. Journal of Paleontology, 48(4): 751-755.

DZIK, J. 1991. Is fossil evidence consistent with traditional views of the early metazoan phylogeny?, p. 47-56. In A. M. Simonetta and S. Conway Morris (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.

DZIK, J. Y., L. ZHAO AND M. Y. ZHU. 1997. Mode of life of the Middle Cambrian eldonioid lophophorate Rotadiscus. Palaeontology, 40(2):385-396.

MADSEN, F. J. 1956. Eldonia, a Cambrian siphonophore-formerly interpreted as a holoturian[sic]. Videnskabelige meddelelser fra Dansk naturhistorisk forening i Københaven, 118: 7-14.

MADSEN, F. J. 1957. On Walcott’s supposed Cambrian holothurians. Journal of Paleontology, 31(1): 281-282.

MADSEN, F. J. 1962. The systematic position of the Middle Cambrian fossil Eldonia. Meddelelser fra Dansk Geologisk Førening, 15: 87-89.

PAUL, C. R. C. AND A. B. SMITH. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59(4): 443-481.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian holothurians and medusae. Smithsonian Miscellaneous Collections, 57(3): 41-68.

ZHU, M. Y., Y. L. ZHAO AND J. Y. CHEN. 2002. Revision of the Cambrian discoidal animals Stellostomites eumorphus and Pararotadiscus guizhouensis from South China. Geobios, 35(2): 165-185.

Other Links:

None

Eiffelia globosa

3D animation of the sponges Eiffelia globosa, Choia ridleyi, Diagoniella cyathiformis, Hazelia conferta, Pirania muricata, Vauxia bellula, and Wapkia elongata and the sponge-like Chancelloria eros a sponge-like form covered of star-shaped spines.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Class: Calcarea (Order: Heteractinida)
Remarks:

Eiffelia is thought to fall near the divergence of the calcareous and hexactinellid sponges (Botting and Butterfield, 2005).

Species name: Eiffelia globosa
Described by: Walcott
Description date: 1920
Etymology:

Eiffelia – from the nearby Eiffel Peak, named on account of its resemblance to Paris’ Eiffel Tower. The tower bears the name of Alexandre Gustave Eiffel (1832-1923), a French engineer famous for building many large steel structures.

globosa – from the Latin globus, “globe or ball,” reflecting the organism’s shape.

Type Specimens: Lectotype –USNM66522, in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: E. araniformis Missarzhevsky and Mambetov, 1981 from several Early Cambrian small shelly fossil deposits (Bengtson et al., 1990; Skovsted, 2006).

Age & Localities:

Period:
Lower Cambrian to Middle Cambrian Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Trilobite Beds on Mount Stephen and the Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Originally described by Walcott in 1920, little research concentrated on Eiffelia until it was re-described by Rigby in 1986 as part of his review of Burgess Shale sponges. Additional specimens collected by the Royal Ontario Museum were described subsequently by Rigby and Collins (2004). Bearing characteristics of both the calcareous and hexactinellid sponges, Eiffelia has been important in determining higher-level evolutionary relationships within the sponges. Eiffelia spicules form by the accretion of phosphate on a siliceous core, which provides a possible evolutionary transition between the minerals used in the construction of spicules (Botting and Butterfield, 2005)

Description:

Morphology:

Eiffelia is usually preserved as a flattened net of spicules within a single layer, forming a mesh with an approximately circular outline 1 to 6 cm in diameter. Spicules occur in at least five distinct size ranges. The largest ones usually take the form of six-pointed stars (hexaradiate), whereas the smallest ones usually have only four-pointed ends. The rays generally run parallel to one another, producing a somewhat geometric lattice-like appearance. The largest spicules, spaced a few millimetres apart from one another, enclose spicules of the second size class between their slender tapering rays. The smaller spicules, which are so small as to rarely be preserved, fill the remaining gaps in the mesh. The spicules themselves are joined by a small central disc formed from flared-out sections of their bases at the point where the six spines meet. Eiffelia’s spicules supported a thin wall that would have formed an orb-shaped sac perforated with occasional small elliptical openings (ostia).

Abundance:

Relatively rare in the Walcott Quarry where it represents only 0.1% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
60 mm

Ecology:

Ecological Interpretations:

The sponge sat on the sea floor possibly sticking on hard surfaces. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

BENGTSON, S. S. CONWAY MORRIS, B. J. COOPER, P. A. JELL AND B. N. RUNNEGAR. 1990. Early Cambrian fossils from South Australia, 9, 364 p.

BOTTING, J. P. AND N. J. BUTTERFIELD. 2005. Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proceedings of the National Academy of Sciences, 102(5): 1554.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 1-105.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science, 1: 1-155.

SKOVSTED, C. B. 2006. Small shelly fauna from the Upper Lower Cambrian Bastion and Ella Island Formations, North-East Greenland. Journal of Paleontology, 80:1087-1112.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67(6): 261-364.

Other Links:

None

Liangshanella burgessensis

3D animation of Liangshanella burgessensis.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Class: Unranked clade (Order: Bradoriida, stem group arthropods)
Remarks:

Liangshanella is a bradoriid belonging to the family Svealutidae (Siveter and Williams, 1997). The bradoriids were traditionally compared to other bivalved arthropods, such as Recent ostracods (e.g. Sylvester-Bradley, 1961) and Cambrian phosphatocopids (e.g. Maas et al., 2003). However, they are thought to be in the stem-lineage or in a sister group position relative to the Crustaceans (e.g. Hou et al., 1996; Shu et al., 1999; Hou et al., 2010).

Species name: Liangshanella burgessensis
Described by: Siveter and Williams
Description date: 1997
Etymology:

Liangshanella – from Liangshan, a region in South Shaanxi, China.

burgessensis – from the Burgess Shale. The name is derived from Mount Burgess (2,599 m), a mountain peak in Yoho National Park. Mount Burgess was named in 1886 by Otto Klotz, the Dominion topographical surveyor, after Alexander Burgess, a former Deputy Minister of the Department of the Interior.

Type Specimens: Holotype –USNM272083 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: L. circumbolina from the Flinders Ranges in South Australia; L. liangshanensis, L. rotundata, L. orbicularis, L. yunnanensis and L. baensis from southern China; L. lubrica from the Tongying Formation in Hubei, China; L. sayutinae from the Trans-Baikal area in the Russian Far-East and Greenland; L. birkenmajeri from Antarctica. See references in Siveter and Williams (1997).

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge.

History of Research:

Brief history of research:

Liangshanella liangshanensis is the type species of this genus and was first described by Huo (1956) from Lower Cambrian rocks of south China. Further species have since been described in China (Zhang, 1974; Li, 1975; Qian and Zhang, 1983; Zhang, 2007), Russia and Greenland (Melnikova, 1988), Australia (Topper et al., in press) and Antarctica (Wrona, 2009). Liangshanella burgessensis from the Burgess Shale was described by Siveter and Williams (1997), and the genus has been included in studies on the biogeography, evolution and affinity of the bradoriids (e.g. Shu and Chen, 1994; Williams et al., 2007).

Description:

Morphology:

Like all bradoriids, Liangshanella burgessensis has a small bivalved carapace with a straight dorsal hinge held together by a band of cuticle. The carapaces range in length from 0.66 mm – 4.25 mm and were soft and unmineralized. The bivalved carapace of L. burgessensis is sub-circular, with the anterior end being slightly narrower than the posterior end. There is a marginal ridge along the lateral surface of the valves. A centrally situated, sub-circular muscle scar composed of numerous small pits can be seen inside the valve. No evidence of soft parts has been found.

Abundance:

Liangshanella burgessensis is known from thousands of specimens and is the most common taxon in the Walcott Quarry (11.8% of the community, Caron and Jackson, 2008).

Maximum Size:
10 mm

Ecology:

Ecological Interpretations:

Liangshanella was likely epibenthic, living on and within the first few metres of the soft muddy seafloor. Like other bradoriids, Liangshanella was probably a deposit feeder, and may have even been scavenging or predating on microscopic non-mineralized animals (Williams et al., 2007). Most specimens of Liangshanella found are empty carapaces, being left over from when the animal moulted its exoskeleton. Bradoriids are extremely common in Cambrian rocks, suggesting they played important roles in recycling nutrients in the seabed (Shu et al., 1999). They were also important food sources for larger animals, as indicated by their common presence in coprolites (e.g. Vannier and Chen, 2005).

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

HOU, X., D. J. SIVETER, M. WILLIAMS, D. WALOSSEK AND J. BERGSTRÖM. 1996. Preserved appendages in the arthropod Kunmingella from the early Cambrian of China: its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda. Philosophical Transactions of the Royal Society, B351: 1131-1145.

HOU, X., M. WILLIAMS, D.J. SIVETER, D.J. SIVETER, R.J. ALDRIDGE AND R.S. SANSOM. 2010. Soft-part anatomy of the Early Cambrian bivalve arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida. Proceedings of the Royal Society, B277: 1835-1841.

HUO, S. 1956. Brief notes on lower Cambrian Archaeostraca from Shensi and Yunnan. Acta Palaeontologica Sinica, 4: 425-445.

LI, Y. 1975. Cambrian Ostracoda and other new descriptions from Sichuan, Yunnan and Shaanxi. Professional Papers of Stratigraphy and Palaeontology, 2: 37-72.

MAAS, A., D. WALOSZEK AND K.J. MÜLLER. 2003. Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian “Orsten” of Sweden. Fossils and Strata, 49: 1-238.

MELNIKOVA, L. M. 1988. Nekotoryye bradoriidy (Crustacea) iz botomskogo yarusa vostochnogo Zabaykal’ya. Paleontologicheskiy Zhurnal, 1: 114-117.

QIAN, Y. AND S. ZHANG. 1983. Small shelly fossils from the Xihaoping Member of the Tongying Formation in Fangxian County of Hubei Province and their stratigraphical significance. Acta Palaeontologica Sinica, 22: 82-94

SHU, D. AND L. CHEN. 1994. Cambrian palaeobiogeography of Bradoriida. Journal of Southeast Asian Earth Sciences, 9: 289-299.

SHU, D., J. VANNIER, H. LUO, L. CHEN, X. ZHANG AND S. HU. 1999. Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (Lower Cambrian, Southwest China). Lethaia, 35: 279-298.

SIVETER, D.J. AND M. WILLIAMS. 1997. Cambrian Bradoriid and Phosphatocopid Arthropods of North America. Special Papers in Palaeontology, 57: 1-69.

SYLVESTER-BRADLEY, P. C. 1961. Archaeocopida, p. Q100-103. In R. C. Moore, and C. W. Pitrat (Eds.), Treatise on Invertebrate Paleontology Part Q, Arthropoda 3, Crustacea, Ostracoda. Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas.

Other Links:

None

Diagoniella hindei

3D animation of Diagoniella cyathiformis and other sponges (Choia ridleyi, Eiffelia globosa, Hazelia conferta, Pirania muricata, Vauxia bellula, and Wapkia elongata) and Chancelloria eros a sponge-like form covered of star-shaped spines.

Animation by Phlesch Bubble © Royal Ontario Museum

Taxonomy:

Class: Hexactinellida (Order: Reticulosa)
Remarks:

Diagoniella is placed in the Family Protospongiidae (primitive hexactinellids) and may be confused with Protospongia (Rigby, 1986). Hexactinellid sponges (glass sponges) have a skeleton composed of four to six-pointed siliceous spicules. They are considered to be an early branch within the Porifera phylum due to their distinctive composition.

Species name: Diagoniella hindei
Described by: Walcott
Description date: 1920
Etymology:

Diagoniella – from the Greek dia, “throughout, during or across”, and gon, “corner, joint or angle” refering to the diagonal spicules of this sponge.

hindei – for Dr. G. J. Hinde, a British palaeontologist who worked on fossil sponges.

Type Specimens: Lectotype –USNM66503 (D. hindei), in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. (D. cyathiformis type and repository information unknown.)
Other species:

Burgess Shale and vicinity: D. cyathiformis (Dawson, 1889) from the Trilobite Beds and Tulip Beds on Mount Stephen, Walcott Quarry on Fossil Ridge and Stanley Glacier (Caron et al., 2010).

Other deposits: D. coronata Dawson, 1890 from the Ordovician of Québec at Little Métis.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone to late Middle Cambrian Bolaspidella Assemblage Zone (approximately 505 million years ago). Back to top
Principal localities:

Burgess Shale and vicinity: This sponge has been found at the Walcott Quarry on Fossil Ridge, the Trilobite Beds and Tulip Beds (S7) localities on Mount Stephen and from Stanley Glacier in Kootenay National Park.

Other deposits: D. cyathiformis (Dawson, 1889) from the Ordovician of Québec at Little Métis to the Middle Cambrian Wheeler and Marjum Formations in Utah (for D. cyathiformis) D. hindei Walcott, 1920 from the Cambrian of Utah and Nevada as well (Rigby, 1978, 1983).

History of Research:

Brief history of research:

Diagoniella was described by Rauff in 1894 as a subgenus of Protospongia. Walcott described a new species, D. hindei, in his 1920 monograph of the sponges from the Burgess Shale and made Diagoniella a valid genus, considering it distinct from Protospongia. Ribgy (1986) restudied the sponges of the Burgess Shale including D. hindei and Rigby and Collins (2004) concluded that another species, known in other Cambrian deposits, D. cyathiformis, is also present in the Burgess Shale.

Description:

Morphology:

D. hindei is a small and simple conical sac-like sponge. The skeleton is composed of diagonally orientated coarse spicules along the length of the sponge. These spicules are known as stauracts, and differ from the normal six rayed spicules of the hexactinellid sponges in that they have two rays reduced which gives them a distinctive cross-shape. The spicules knit together to form a net, although, unlike some hexactinellid sponges this net is not fused, which make the sponges very delicate. D. cyathiformis is a larger (up to 120 mm) and more elongate, conical species. The long spicules form a tuft-like root structure at the base of the sponge.

Abundance:

Diagoniella is relatively common but represents only 0.24% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
18 mm

Ecology:

Ecological Interpretations:

Diagoniella would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., R. GAINES, G. MANGANO, M. STRENG AND A. DALEY. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the Southern Canadian Rockies. Geology, 38: 811-814.

RIGBY, J. K. 1978. Porifera of the Middle Cambrian Wheeler Shale, from the Wheeler Amphitheater, House Range, in Western Utah. Journal of Paleontology, 52: 1325-1345.

RIGBY, J. K. 1983. Sponges of the Middle Cambrian Marjum Limestone from the House Range and Drum Mountains of Western Millard County, Utah. Journal of Paleontology, 57: 240-270.

RIGBY, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None