Home > Fossil Gallery
The Burgess shale is famous for its stunning soft-bodied fossils (mostly animals and algae) which offer a spectacular picture of marine life that populated our planet 500 million years ago. These fossils are of critical importance in understanding the origin of modern life on Earth. (For more information, visit the Science Section).
Using the latest web technology and high-resolution images you will be able to browse through hundreds of images of fossil specimens and filter particular types of information. Additionally, because the fossils are usually flattened within the rock layers, the latest in digital animation techniques brings many species to life.
This gallery is a comprehensive source of information based on the latest scientific research covering the majority of species so far described from the Burgess Shale. It contains a growing collection of over 500 high resolution images representing 184 species in 135 genera. In addition, dozens of scientifically accurate drawings and breathtaking digital animations will allow you to visualize these organisms in three dimensions and see how they lived.
The Main Gallery is currently sorted alphabetically on the genus names of 135 organisms. By clicking on these names you will be directed to specific pages providing various media, including high resolution images, reconstructions and digital animations (when available), as well as information ranging from biological affinity and a history of research, to a brief species description and a list of references.
When a genus is represented by more than one species, selected images of the various species are usually provided for comparison on the same page. The descriptive text, however, refers to the type species within that genus and only brief mention is given to each of the other known species, if applicable.
Photos: All images of specimens can be enlarged by clicking on the images or by using the small navigation tools at the bottom of the images. Several images of the same specimens taken using different illumination techniques (for example of both the part and counterpart of the same specimen), are often presented side by side to show different details (link to photography). Information about the repository of the specimens, basic descriptions including dimensions and locality information, and photographic conditions are included in the captions after the species name. Most of the known primary types (including holotypes) have been photographed for each species. Repository and number of specimens (in brackets) presented in this gallery are as follows: Royal Ontario Museum (292), Smithsonian Institution (184), Geological Survey of Canada (18), University of Michigan (9), and Harvard University (2).
Drawings: Simple line drawings (basic scientific reconstructions or sketches) of specimens which can also be enlarged in the same way as photos.
2D Models: Detailed scientific reconstructions which can also be enlarged in the same way as drawings and photos.
3D Models: Digital animations (videos) with the static organism rotating through 360 degrees around the organisms. The organisms themselves appear “frozen” to allow observation of fine anatomical details.
3D Animations: Digital animations (videos) of individual organisms or group of similar organisms (e.g. brachiopods and sponges) as they would have appeared in their environment.
In 1990, noted palaeontologist Stephen Jay Gould spoke at the Royal Ontario Museum about the fossils of the Burgess Shale. While many of Gould’s interpretations have been challenged, his talk provides a snapshot of how the organisms were viewed then. (6:20)
So this is Marrella. I should say that arthropods are classified primarily by numbers of segments and patterns in their various body parts.
And here’s Marrella, it’s an arthropod that doesn’t fit into any group. It has these two sets of spines… there it is. It doesn’t have any allegiance.
So Whittington was puzzled when he first published on Marrella in 1971 but he went on and the next creature he studied was Yohoia.
Looked like a shrimp, had been called one by Walcott, and again, as Whittington studied it with care, it just didn’t fit into any modern group. It looks like a shrimp superficially, but when you start counting the segments you don’t have anything like the crustacean body plan.
For instance, up in the head you have this unique set of frontal appendages which have no homologue anywhere else in the arthropods. Whittington ended up calling them simply “the great appendages” because he didn’t know what to do with them.
This is Odaraia, a creature that swims on its back and has a tail fluke that looks more like a whale than an arthropod, but again, not allied to anything.
Looked vaguely like a swimming crustacean, but isn’t when you look at the segments and their patterns of the tail.
This is Sidneyia, which was described by Walcott as a chelicerate, that is a member of the horseshoe crab, eventually the spider-scorpion group. And in some superficial sense that’s what it looks like. But in detail it isn’t.
All chelicerates have six pairs of appendages on their head. Sidneyia has one pair. It’s not like anything… just these antennae… it’s not like anything else… it is just is what it is.
This is Habelia, an odd creature…
… with tubercules all over its body.
This is Leanchoilia, my personal favourite for elegance, but not among the survivors.
Again, these odd great appendages, as Whittington calls them, with their whiplash endings.
This is Aysheaia.
Now, this creature is probably an onychophore, that is it is a member of a modern group symbolized by the genus with the wonderful name Peripatus, which is a not very well known group, but it’s thought to be possibly intermediary between annelids and arthropods and may be the ancestor of the insect group. So here we may have a creature that is truly related to one of the surviving groups of arthropods.
And here is a form that Des Collins found and initially gave a field name, following paleontological tradition…
… he called it “Santa Claws”. And eventually named it Sanctacaris, which means much the same thing. Now again, does it look any different than the ones I just showed you?
Would you have picked out this creature for success? Could you have predicted that this, by virtue of superiority would go on? Yet it looks as though Sanctacaris really is a chelicerate.
There are six pairs of appendages in the right place on the head so this animal may be at least a cousin to one of the successful lineages. Again, would you have known? Could anyone have known?
This is Opabinia. Opabinia, I think, should stand as one of the great moments in the history of human knowledge.
Because Opabinia, which was described as an arthropod, a shrimp-like creature, by Walcott, who shoehorned it into modern groups as he always did. Opabinia was the first creature re-studied by Whittington that broke the conceptual dam, so to speak, and gave insights into this new world.
Because Whittington began his studies in the early 1970s on Opabinia thinking it would be an arthropod. He realizes, as Walcott did not, that there was some three-dimensionality in these creatures, that they were not just films on the rock.
That he could therefore dissect through and find structures underneath. So he said “Now I can resolve this, I’ll dissect through the body and find the appendages underneath which will prove its arthropod nature. He dissected through and he found nothing. There are no appendages.
And as he reconstructed Opabinia, he came to understand it is not an arthropod, it is some bizarre creature of its own unique anatomy. And in publishing a monograph on Opabinia in 1975 I think you have the breakthrough point in the new interpretation of the Burgess Shale.
Here is Marianne’s picture of Opabinia, a bizarre creature with five-count them, five-eyes, this vacuum-cleaner like nozzle with a food-collecting device in front, this bellows-like apparatus behind, followed by a tail. I don’t know what it is. It’s just weird.
This is Nectocaris, a peculiar creature that looks like a chordate behind, combined with a fin ray…
… and more like an octopod in the front. Who knows?
This is Dinomischus, a peculiar, stalked, stemmed creature…
… with no known affinity to anything else.
This is Odontogriphus, literally meaning “the toothed mystery” a good name.
A flat, gelatinous, annulated creature with a row of tooth-like structures surrounding a mouth and a pair of sensory palps.
Walcott described three separate genera which he allocated, as was his wont, according to the shoehorn, into three conventional groups.
This animal he called a jellyfish and called Peytoia.
This creature he called a sea cucumber and called Laggania.
And this, which had been described before and looks like the body of an arthropod, he called (it had been named before) Anomalocaris, meaning “the odd shrimp”. Well I think that you’ve guessed it already.
It turns out that all three go together. They form a single creature which is one of the weirdest of all the odd animals of the Burgess.
It’s also the largest Cambrian organism. Some specimens are almost a metre in length.
The so-called jellyfish is the mouth of this creature, working on a circular, nutcracker principle rather than the jaw of vertebrates principle.
The Anomalocaris itself turns out to be one of a pair of feeding appendages, and the so-called sea cucumber is the body of the whole animal.