The Burgess Shale

Tokummia katalepsis

Tokummia katalepsis, paratype, ROMIP 63826

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Hymenocarines, Family Protocarididae (Miller 1889).
Species name: Tokummia katalepsis
Remarks:

Hymenocarines were early arthropods with bivalved carapaces and mandibles, forming the bulk of the first mandibulates (represented today by myriapods, crustaceans and insects) (Aria & Caron 2017; Vannier et al. 2018). Tokummia was a close relative of Branchiocaris, both grouped within the eponymous family Protocarididae Miller, 1889—one of the oldest formal taxa from the Burgess Shale. The relationship of Protocarididae within hymenocarines, as well as the relative placement of hymenocarines within early mandibulates is still under investigation (Aria 2022; Izquierdo-López & Caron 2022).

Described by: Aria and Caron
Description date: 2017
Etymology:

Tokummia — from Tokumm Creek, a river of the Kootenay area, in British Columbia, running through Marble Canyon, near the outcrop where the fossil was first found.

katalapsis — from the Greek, meaning “seizing, grasping,” by reference to the well-developed pincers of the animal.

Type Specimens: Holotype ROMIP 63823; paratypes ROMIP 63014, 63081, 63824–63827, 63736 (7 specimens), in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: none.
Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Wuliuan Stage, upper part of the Burgess Shale Formation (around 507 million years old).
Principal localities:

The Marble Canyon and Tokumm Creek areas of the Burgess Shale, British Columbia.

History of Research:

Brief history of research:

Tokummia was discovered during the original excavation of the Marble Canyon locality in 2012, along Yawunik and other taxa characteristic of this area. Additional specimens were later discovered during quarrying operations and along Tokumm Creek. Tokummia’s description was published in 2017: Tokummia’s size and quality of preservation helped identify mandibles and other diagnostic traits of mandibulates. Mandibles were also identified in Branchiocaris in the same study. This study partially rehabilitated original interpretations by Derek Briggs recognizing mandibulate affinities of Cambrian bivalved arthropods (hymenocarines) (Briggs 1992) but were not without their issues, notably that of the presence of an intercalary segment (e.g. Edgecombe 2017). However, research on hymenocarines has since been supportive of the mandibulate affinity of these arthropods (Vannier et al. 2018; Izquierdo-López & Caron 2022). Tokummia therefore remains central to our modern understanding of early arthropod evolution as a whole (Aria 2022).

Description:

Morphology:

Like other protocaridids, Tokummia’s long, tubular, multisegmented body is largely enclosed in a broad bivalved carapace with ample, lobate corners. Small processes are present medially at the front and rear of both valves. Eyes are very reduced or absent. The very front of the animal bears a bilobed organ covered by triangular sclerite. A pair of short, stout, multisegmented antennules are the most anterior appendages. The next pair of appendages are large, round mandibles, followed by modified appendages identified as maxillules and maxillae. The first pair of thoracic limbs are very large pincers projecting at the front of the animal, and therefore called maxillipeds. Trunk limbs are composed of well-developed walking legs ending in strong claws, and of lobate flaps that get much larger starting with trunk limb pair 9. There is a total of about 50 limb pairs in the trunk, one for each segment, which gradually decrease in size towards the back. Some tergites are fused at the back of the animal, forming a plate, and the tailpiece is a pair of caudal rami, typical of mandibulates.

Abundance:

The original description was based on 21 specimens (Aria & Caron 2017), but this count has so far doubled (Nanglu et al. 2020). Tokummia is a signature taxon of both the Marble Canyon quarry and the Tokumm sites.

Maximum Size:
About 15 cm.

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

The combination of large pincers and strong walking appendages in Tokummia suggests it was a nektobenthic predator. However, as in Branchiocaris and Protocaris, the absence of distinct eyes in the fossils, implying they were either very reduced or absent, indicates that the predatory lifestyle of Tokummia and other Protocarididae had its own specificity. Protocaridids either relied more heavily on their other sensory organs or were perhaps more passive predators.

References:

  • ARIA, C. 2022. The origin and early evolution of arthropods. Biological Reviews, 97, 1786–1809.
  • ARIA, C. and CARON, J. B. 2017. Burgess Shale fossils illustrate the origin of the mandibulate body plan. Nature, 545, 89–92.
  • BRIGGS, D. E. G. 1992. Phylogenetic significance of the Burgess Shale crustacean Canadaspis. Acta Zoologica, 73, 293–300.
  • EDGECOMBE, G. D. 2017. Palaeontology: The cause of jaws and claws. Current Biology, 27, R796–R815.
  • IZQUIERDO-LÓPEZ, A. and CARON, J.-B. 2022. The problematic Cambrian arthropod Tuzoia and the origin of mandibulates revisited. Royal Society Open Science, 9.
  • MILLER, S. A. 1889. North American geology and palaeontology for the use of amateurs, students and scientists. Western Methodist Book Concern, Cincinnati.
  • NANGLU, K., CARON, J.-B. and GAINES, R. R. 2020. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology, 46, 58–81.
  • VANNIER, J., ARIA, C., TAYLOR, R. S. and CARON, J. B. 2018. Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. Royal Society Open Science, 5:172206.
Other Links:

Titanokorys gainesi

Titanokorys gainesi, holotype ROMIP 65168

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Order Radiodonta, Family Hurdiidae
Species name: Titanokorys gainesi
Remarks:

With its single pair of jointed frontal appendages, lateral swimming flaps, and circular mouth structure, Titanokorys possesses all the hallmarks of Radiodonta, part of the stem group to the true arthropods which also includes the iconic Anomalocaris (Collins 1996). The frontal appendages with comb or rake-like inner spines are characteristic of the radiodont family Hurdiidae. Phylogenetic analysis has found it to be closely related to Cambroraster from the Burgess Shale and Zenghecaris from the Chengjiang deposit, which share similarities in carapace shape and a large number of finely-spaced spines on the appendages (Caron and Moysiuk 2021).

Described by: Caron and Moysiuk
Description date: 2021
Etymology:

Titanokorys – from Titans, a group of powerful Greek deities of great sizes, in reference to the large size of the central carapace and from the Greek word Korys meaning helmet.

gainesi – after Robert R. Gaines, Professor of Geology at Pomona College, who was instrumental in the co-discovery of the Marble Canyon fossil deposit in 2012.

Type Specimens: Holotype ROMIP 65415; Paratypes ROMIP 65168, 65741, 65748, and 65749, at the Royal Ontario Museum.
Other species:

Burgess Shale and vicinity: None
Other deposits: None

Age & Localities:

Age:
Middle Cambrian, Wuliuan Stage, upper part of the ‘thick’ Stephen Formation (Burgess Shale) (around 507 million years old).
Principal localities:

Marble Canyon and Mount Whymper / Tokumm Creek, Kootenay National Park, British Columbia.

History of Research:

Brief history of research:

Several specimens of Titanokorys were discovered at the Marble Canyon and North Tokumm sites in Kootenay National Park in 2014 and 2018. Because of their distinctive shape, large size, and resemblance to the smaller Cambroraster (nicknamed “spaceship”), the head carapaces were nicknamed the “mothership.” The genus and species were formally described in 2021 (Caron and Moysiuk 2021).

Description:

Morphology:

The defining feature of Titanokorys gainesi is its large dorsal carapace. This is roughly elliptical in overall shape. Frontally this carapace has a small spine flanked by a pair of blunt lobes. The rear sides of the carapace are developed into short, wing-like projections. Each “wing” has a small spine along its inner margin. The rear central part of the carapace extends into a bilobate projection. Between the lateral “wings” and bilobate projection are notches that presumably accommodated the eyes. On the underside, the head is protected by two additional plates, shaped like elongate paddles and joined together at the front by their narrow ends, each of which bears a stout, downward-directed spine. All three plates are covered in longitudinal rows of small bumps. A circular, tooth-lined jaw and a pair of jointed frontal appendages with five long, curving, rake-like inner spines are located on the underside, near the front of the head. The body bears rows of stacked gill blades.

Abundance:

Titanokorys is rare in Kootenay National Park, being known from just twelve specimens. Only disarticulated frontal appendages, mouthparts, carapace elements, and gills are known.

Maximum Size:
About 500 mm.

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

Like other hurdiids, Titanokorys shows adaptations to sweep feeding. Specifically, the rake-like inner spines on its stout frontal appendages form a rigid basket-like apparatus of spines surrounding the mouth, which could have functioned to disturb the sediment, sift out burrowing organisms, and move them into the mouth for further processing. Compared to related hurdiids like Hurdia and Stanleycaris, the particularly finely-spaced, strong, hooked secondary spines on the inner spines could have enabled capture of minute benthic organisms, although larger prey may also have been consumed. As the largest animal known from the Marble Canyon and Tokumm communities, Titanokorys would have been at the top of the food chain. Titanokorys shared the environment with the slightly smaller Cambroraster, which probably employed a similar mode of feeding, although body size differences may have entailed distinct prey size niches (Moysiuk and Caron 2019; Caron and Moysiuk 2021). Respiration would have been accomplished primarily through the rows of gill blades on the body (Daley et al. 2013).

References:

  • CARON, J.-B. and MOYSIUK, J. 2021. A giant nektobenthic radiodont from the Burgess Shale and the significance of hurdiid carapace diversity. Royal Society Open Science, 8: 210664.
  • COLLINS, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.). Journal of Paleontology, 70: 280–293.
  • DALEY, A. C., BUDD, G. E. and CARON, J.-B. 2013. Morphology and systematics of the anomalocaridid arthropod Hurdia from the Middle Cambrian of British Columbia and Utah. Journal of Systematic Palaeontology, 11: 743–787.
  • MOYSIUK, J. and CARON, J.-B. 2019. A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources. Proceedings of the Royal Society B, 286: 20191079.
Other Links:

Surusicaris elegans

Surusicaris elegans, holotype ROMIP 62976. Specimen dry – direct light (left column), dry – polarized light (right column).

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Family Isoxyidae?
Species name: Surusicaris elegans
Remarks:

Surusicaris is a close relative of Isoxys, as indicated by the type of carapace, eyes, and frontal pair of raptorial appendages (Aria & Caron, 2015). The presence of spines on the dorsal side of the frontal appendage is a character shared with radiodontans, such as Anomalocaris. Current evidence draws out a consensus among authors placing isoxyids as sister taxa to true arthropods (Edgecombe, 2020; Aria, 2022), although it is not clear whether Surusicaris and Isoxys are part of a single separate lineage (that is, form a monophyletic group).

Described by: Aria and Caron
Description date: 2015
Etymology:

Surusicaris – After Surus, “the Syrian,” which would have been the last elephant of Hannibal, with broad shields covering its sides and missing a tusk.

elegans – Referring to the delicate, laced appearance of the limbs.

Type Specimens: Holotype ROMIP 62977, at the Royal Ontario Museum, Toronto, Canada
Other species:

Burgess Shale and vicinity: None
Other deposits: None

Age & Localities:

Age:
Middle Cambrian, Wuliuan stage, upper part of the Burgess Shale Formation (around 507 million years old).
Principal localities:

Marble Canyon, Kootenay National Park, British Columbia.

History of Research:

Brief history of research:

Along with Yawunik kootenayi (Aria, Caron & Gaines, 2015), Surusicaris elegans (Aria & Caron, 2015) is one of the first two new arthropods described from the Marble Canyon locality of the Burgess Shale. The original study was based on a single specimen from the original 2012 expedition. No other specimen has been confirmed so far, in the Burgess Shale or elsewhere. Surusicaris has remained a critical taxon in understanding the place of isoxyids in the transition to a euarthropod body plan (Fu et al., 2022; Aria, 2022).

Description:

Morphology:

Surusicaris elegans is about 15mm long and enclosed in a broad carapace made of two semi-circular valves, without spines. Only the posterior extremity of the body and tailpiece remain uncovered. The animal has a well-defined head composed of, at the front, a pair of large spherical eyes and a segmented predatory appendage, and, at the back of the head, under the carapace, three pairs of short limbs with a lobopod aspect. The frontal appendages show a complex ornament of spines on both the ventral and dorsal margins. The trunk limbs are clearly bipartite, forming two separate but similar branches. As for Isoxys, external segmentation of the trunk is not clearly visible. Inside the body, a bold, black trace runs alongside the gut and branches out inside one limb branch, showing similarities to hemolymphatic (“blood”) channels (Aria & Caron, 2015).

Abundance:

A single specimen from the Marble Canyon quarry.

Maximum Size:
About 15 mm.

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

The large lateral eyes and clawed frontal appendages suggest Surusicaris was an active predator, like its close relative Isoxys (Legg & Vannier, 2013). Trunk limbs lack strong functional modifications, but their lobate aspect in addition to their position underneath the carapace indicates that Surusicaris was mostly a swimmer (Aria & Caron, 2015). Although some authors implied a pelagic lifestyle (Vannier & Chen, 2000), isoxyids are commonly found among benthic/nektobenthic assemblages (Caron & Jackson, 2008) and possess general morphological characteristics of other nektobenthic Cambrian arthropods.

References:

  • Aria, C. (2022) The origin and early evolution of arthropods. Biological Reviews 97, 1786–1809.
  • Aria, C. & Caron, J.-B. (2015) Cephalic and limb anatomy of a new isoxyid from the Burgess Shale and the role of ‘stem bivalved arthropods’ in the disparity of the frontalmost appendage. PLoS ONE 10, e0124979.
  • Aria, C., Caron, J.-B. & Gaines, R. (2015) A large new leanchoiliid from the Burgess Shale and the influence of inapplicable states on stem arthropod phylogeny. Palaeontology 58, 629–660.
  • Caron, J.B. & Jackson, D.A. (2008) Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 222–256.
  • Edgecombe, G.D. (2020) Arthropod origins: Integrating paleontological and molecular evidence. Annual Review of Ecology, Evolution, and Systematics 51, 1–25.
  • Fu, D., Legg, D.A., Daley, A.C., Budd, G.E., Wu, Y. & Zhang, X. (2022) The evolution of biramous appendages revealed by a carapace-bearing Cambrian arthropod. Philosophical Transactions of the Royal Society B: Biological Sciences 377, 20210034.
  • Legg, D.A. & Vannier, J. (2013) The affinities of the cosmopolitan arthropod Isoxys and its implications for the origin of arthropods. Lethaia 46, 540–550.
  • Vannier, J. & Chen, J.Y. (2000) The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia 33, 295–311.
Other Links:

Yohoia tenuis

3D animation of Yohoia tenuis.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Unranked clade Megacheira? (stem group arthropods)
Species name: Yohoia tenuis
Remarks:

Yohoia was originally considered to be a branchiopod crustacean (Walcott, 1912; Simonetta, 1970), but was also described as being closely related to the chelicerates (Briggs and Fortey, 1989; Wills et al., 1998; Cotton and Braddy, 2004). Other analyses suggest that Yohoia belongs in the group of “great appendage” arthropods, the Megacheira, together with LeanchoiliaAlalcomenaeus and Isoxys (Hou and Bergström, 1997; Budd, 2002). The megacheirans have been suggested to either be stem-lineage chelicerates (Chen et al. 2004; Edgecombe, 2010), or stem-lineage euarthropods (Budd, 2002).

Described by: Walcott
Description date: 1912
Etymology:

Yohoia – from the Yoho River, Lake, Pass, Glacier, Peak (2,760 m) and Park, British Columbia, Canada. “Yoho” is a Cree word expressing astonishment.

tenuis – from the Latin tenuis, “thin,” referring to its slender body.

Type Specimens: Lectoype –USNM57699 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott, Raymond and Collins Quarries on Fossil Ridge.

History of Research:

Brief history of research:

Yohoia was first described by Walcott (1912), who designated the type species Y. tenuis based on six specimens, and a second species, Y. plena, based on one specimen. Additional specimens of Y. tenuis were described by Simonetta (1970), and a major redescription of Yohoia tenuis was then undertaken by Whittington (1974), based on over 400 specimens of this species. Whittington (1974) invalidated Y. plena, upgrading it to its own genus, Plenocaris plena, leaving Y. tenuis as the only species of YohoiaYohoia has since been included in several studies on arthropod phylogeny and evolution (e.g., Briggs and Fortey, 1989; Hou and Bergström, 1997; Wills et al., 1998; Budd, 2002; Chen et al., 2004; Cotton and Braddy, 2004).

Description:

Morphology:

The body of Yohoia consists of a head region encapsulated in a cephalic shield and 14 body segments, ending in a paddle-shaped telson. The dorsal head shield is roughly square and extends over the dorsal and lateral regions of the head. There is a pair of great appendages at the front of the head. Each appendage consists of two long, thin segments that bend like an elbow at their articulation, with four long spines at the tip. Three pairs of long, thin, segmented appendages project from beneath the head shield behind the great appendages.

The body behind the head consists of ten segments with tough plates, or tergites, that extend over the back and down the side of the animal, ending in backward-facing triangular points. The first of these body segments may have an appendage that is segmented and branches into two (biramous), with a segmented walking limb bearing a flap-like extension. The following nine body segments have only simple flap-shaped appendages fringed with short spines or setae. The next three body segments have no appendages, and the telson is a paddle-shaped plate with distal spines.

Abundance:

Over 700 specimens of Yohoia are known from the Walcott Quarry, comprising 1.3% of the specimens counted (Caron and Jackson, 2008) but only few specimens are known from the Raymond and Collins Quarries.

Maximum Size:
23 mm

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

Yohoia is thought to have used its three pairs of cephalic appendages, and possibly the biramous limb on the first body segment, to walk on the sea floor. The animal could also swim by waving the flap-like appendage on the body trunk. The setae on these appendages may have been used for respiration. The pair of frontal appendages were likely used to capture prey or scavenge food particles from the sea floor.

References:

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CHEN, J. Y., D. WALOSZEK AND A. MAAS. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37: 3-20.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

EDGECOMBE, G. D. 2010. Arthropod phylogeny: An overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure and Development, 39: 74-87.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

SIMONETTA, A. M. 1970. Studies on non trilobite arthropods of the Burgess Shale (Middle Cambrian). Palaeontographia Italica, 66 (New series 36): 35-45.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WHITTINGTON, H. B. 1974. Yohoia Walcott and Plenocaris n. gen. arthropods from the Burges

Other Links:

None

Thelxiope palaeothalassia

Thelxiope palaeothalassia (GSC 74990). Articulated specimen (close up to the right), associated with several individuals of the arthropod Canadaspis perfecta. Specimen length = 29 mm. Specimen dry – polarized light. Walcott Quarry.

© GEOLOGICAL SURVEY OF CANADA. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Unranked clade (stem group arthropods)
Species name: Thelxiope palaeothalassia
Remarks:

The affinity of Thelxiope has not been considered in detail because the appendages are unknown.

Described by: Simonetta and Delle Cave
Description date: 1975
Etymology:

Thelxiope – from the Greek thelx meaning “enchanting,” and ops, meaning “voice,” referring to the muse-like appearance of the animal.

palaeothalassia – from the Greek palaios, meaning “ancient,” and thalassios, meaning “marine,” in reference to the age and environment where the animal lived.

Type Specimens: Holotype –USNM144914 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Walcott (1912) figured two fragmentary specimens as Mollisoniarara; these were first reinterpreted by Simonetta (1964) within a new genus Parahabelia rara, along with three additional specimens that he thought were related. However, Simonetta and Delle Cave (1975) considered that among those five specimens, the two originally figured by Walcott as M? rara had to be synonymized with M. symmetrica and the other three had to be placed within a new genus and species called Thelxiope palaeothalassia, a name in use since then.

Description:

Morphology:

This species has a relatively wide cephalon and seven segments and resembles Habelia in overall shape. However, in T. palaeothalassia, each segment bears a single prominent spine pointing dorsally. The last segment is armed with a very long pointed telson.

Abundance:

Thelxiope is extremely rare, with only four known specimens.

Maximum Size:
43 mm

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

Thelxiope is too poorly known to allow detailed studies of its ecology.

References:

SIMONETTA, A. M. 1964. Osservazioni sugli arthropodi non trilobiti della “Burgess Shale” (Cambriano medio). Monitore Zoologico Italiano, 72 (3-4: III Contributo: I Generi MolariaHabeliaEmeraldellaParahabelia (Nov.) Emeraldoides (Nov.): 215-231.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.

WALCOTT, C. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6):145-228.

Other Links:

None

Tegopelte gigas

Tegopelte gigas (USNM 189201) – Holotype. Complete specimen showing antennae and appendages partially prepared near the back. Specimen length = 270 mm. Specimen dry – direct (top) and polarized light (bottom). Walcott Quarry.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Unranked clade (stem group arthropods)
Species name: Tegopelte gigas
Remarks:

Tegopelte is usually compared to the soft-bodied “trilobites” such as Naraoia and Saperion, but the exact relationships of these taxa to the mineralized trilobites is uncertain (Whittington, 1977). The tegopeltids and other trilobite-like arthropods are sometimes referred to as Trilobitoidea, which when grouped together with the trilobites form the Lamellipedians (Hou and Bergström, 1997; Wills et al., 1998; Edgecombe and Ramsköld, 1999). This group has been variously placed in the upper stem lineage of the arthropods (Budd, 2002), or in the stem lineage of either the mandibulates (Scholtz and Edgecombe, 2006) or the chelicerates (Cotton and Braddy, 2004).

Described by: Simonetta and Delle Cave
Description date: 1975
Etymology:

Tegopelte – from the Greek tegos, “tile,” and pelte, “leather-shield,” referring to the shape of the dorsal body covering.

gigas – from the Greek gigas, “giant,” referring to the large size of the animal.

Type Specimens: Holotype –USNM189201 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Tegopelte was first described by Simonetta and Delle Cave (1975) to include only two relatively large specimens. This original description showed Tegopelte to have a cephalon with six or seven pairs of walking appendages, a thorax of four tergites each bearing five appendages, and a tail segment with ten appendages. Whittington (1985) re-examined the animal, reducing the number of head appendages to three, and describing the thorax as having only three tergites with three appendages each. The tail in Whittington’s (1985) reconstruction had two segments with a total of 20 appendages. Later re-examination by Ramsköld et al. (1996) suggested that the body has no tergites, but instead consists of an undivided dorsal shield. Tegopelte has been grouped together with the Chengjiang taxon Saperion to form the Tegopeltidae (Ramsköld et al., 1996; Hou and Bergström, 1997), a clade later confirmed by cladistic analysis (Edgecombe and Ramsköld, 1999; Hendricks and Lieberman, 2008).

Description:

Morphology:

The dorsal morphology of Tegopelte consists of an elongated oval-shaped dorsal shield that is featureless and undivided. The length of the two known specimens is 25.7 cm and 27.0 cm, making it one of the largest arthropods in the Burgess Shale. The ventral morphology consists of a pair of multi-segmented antennae at the front of the body, followed by a series of identical limbs that are segmented and branch into two (biramous), totaling approximately 33 along the entire body. The biramous limbs have a walking branch made up of six segments with a pair of spines on the terminal segment, and a filamentous branch where numerous elongated oval blades attach to a central shaft. The biramous limbs decrease in size towards the posterior end of the body.

Abundance:

Tegopelte is extremely rare, with only two known specimens.

Maximum Size:
270 mm

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

Tegopelte probably spent much of its time walking on the seafloor, based on the presence of many appendages. It used the segmented branches of its biramous appendages for walking, and it is likely that the filamentous branches were used for oxygen exchange, and to propel the animal through the water during short bursts of swimming. The antennae would have been used to sense the environment. The lack of eyes, gut glands and feeding appendages make it difficult to allocate a feeding strategy to Tegopelte.

References:

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216: 395-415.

EDGECOMBE, G. D. and L. RAMSKÖLD. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Jounral of Paleontology, 73: 263-287.

HENDRICKS, J. R. AND B. S. LIEBERMAN. 2008. New phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. Journal of Paleontology, 83: 585-594.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

RAMSKÖLD, L., J. CHEN, G. D. EDGECOMBE AND G. ZHOU. 1996. Preservational folds simulating tergite junctions in tegopeltid and naraoiid arthropods. Lethaia, 29: 15-20.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. . Palaeontographia Italica, 69: 1-37.

WHITTINGTON, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, B, 280: 409-443.

WHITTINGTON, H. B. 1985. Tegopelte gigas, a second soft-bodied trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology, 59: 1251-1274.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

Other Links:

None

Stanleycaris hirpex

Stanleycaris hirpex (ROM 59944) – Holotype, part and counterpart. Individual claw. Specimen length = 29 mm. Specimen dry – polarized light. Stanley Glacier.

© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Dinocarida (Order: Radiodonta, stem group arthropods)
Species name: Stanleycaris hirpex
Remarks:

Stanleycaris is an anomalocaridid closely related to Hurdia and Laggania. Anomalocaridids have been variously regarded as basal stem-lineage euarthropods (e.g., Daley et al., 2009), basal members of the arthropod group Chelicerata (e.g., Chen et al., 2004), and as a sister group to the arthropods (e.g., Hou et al., 2006).

Described by: Caron et al.
Description date: 2010
Etymology:

Stanleycaris – from Stanley Glacier, 40 kilometres southeast of the Burgess Shale in Kootenay National Park, where the fossils come from and the Latin caris, meaning “shrimp.” The name Stanley was given after Frederick Arthur Stanley (1841-1908), Canada’s sixth Governor General.

hirpex – from the Latin, hirpex, meaning “large rake,” in reference to the rake-like aspect of the appendage.

Type Specimens: Holotype –ROM59944 in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Stanley Glacier in Kootenay National Park.

History of Research:

Brief history of research:

The first fossils of this species were collected by the Royal Ontario Museum in 1996 from talus slopes, but it was not until 2008, during a larger expedition, that specimens were discovered in their proper stratigraphic context. A description of this new genus and species soon followed (Caron et al., 2010).

Description:

Morphology:

Stanleycaris is known from paired or isolated grasping appendages and disarticulated assemblages. The entire animal might have reached 15 centimetres in total length. The grasping appendages range in length from 1.2 cm to 3 cm and have eleven segments (or podomeres), with five spinous ventral blades on the second to sixth segments. Double-pointed dorsal spines are particularly prominent from the second to the sixth segment, decreasing in size towards the distal end of the appendage. The longest of these robust spines is typically two to three times shorter than the ventral blades. The last segment has three curved terminal spines. Mouthparts are represented by circlets of plates bearing teeth around a central square opening. Assemblages are poorly preserved, and the best example consists of a pair of grasping appendages, a mouth part, and remnants of what might represent parts of a carapace or gill structures.

Abundance:

This species is relatively rare and only found near Stanley Glacier.

Maximum Size:
150 mm

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

Stanleycaris is considered a predator or a scavenger, based on the morphology of its frontal appendages and mouth parts. The comb-like ventral blades might have been useful for searching small prey items or disturbing carcasses at the water-sediment interface and within the flocculent level of the mud.

References:

CARON, J.-B., R. GAINES, G. MANGANO, M. STRENG AND A. DALEY. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the Southern Canadian Rockies. Geology, 38(9): 811-814.

CHEN, J. Y., L. RAMSKÖLD AND G. Q. ZHOU. 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science, 264: 1304-1308.

CHEN, J. Y., D. WALOSZEK AND A. MAAS. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37: 3-20.

DALEY, A. C., G. E. BUDD, J. B. CARON, G. D. EDGECOMBE AND D. COLLINS. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science, 323: 1597-1600.

HOU, X., J. BERGSTRÖM AND P. AHLBERG. 1995. Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of Southwest China. GFF, 117: 163-183.

Other Links:

http://geology.geoscienceworld.org/cgi/content/full/38/9/811?ijkey=ZQFY537sTggAw&keytype=ref&siteid=gsgeology

Skania fragilis

Skania fragilis (ROM 60752) – Part and counterpart (first and second rows). Complete specimen showing antennae. Specimen length = 11 mm. Specimen dry – polarized light (left column) and wet (right column). Raymond Quarry.

© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Unranked clade (stem group arthropods)
Species name: Skania fragilis
Remarks:

The affinity of Skania is controversial, but most agree it is related to the arthropods. It is similar to Primicaris (Lin et al., 2006; Zhang et al., 2007), and both taxa have been compared to soft-bodied trilobites like Naraoia (Walcott, 1931; Zhang et al., 2007; Hou and Bergström, 1997). Other researchers suggest these taxa are related to the enigmatic Ediacaran taxon Parvancorina (Delle Cave and Simonetta, 1975; Gehling, 1991; Conway Morris, 1993; Simonetta and Insom, 1993), with all three taxa forming a clade in sister group position relative to the trilobites (Lin et al., 2006).

Described by: Walcott
Description date: 1931
Etymology:

Skania – from Skana, the name of a glacier near Mount Robson, British Columbia, Canada.

fragilis – from the Latin fragilis, “brittle,” referring to the delicate nature and small size of the animal.

Type Specimens: Holotype –USNM83950 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: Skania sundbergi Lin et al. 2006 from the Kaili Formation, China.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge.

History of Research:

Brief history of research:

Skania fragilis was first described by Walcott (1931) in a posthumous monograph published by his assistant Charles Resser. Resser compared Skania to the trilobites and Naraoia. However in a redescription by Delle Cave and Simonetta (1975), it was suggested instead that Skania was closely related to the Ediacaran taxon Parvancorina minchami Glaessner 1958. This affinity has been much discussed (Gehling, 1991; Conway Morris, 1993; Simonetta and Insom, 1993; Lin et al. 2006), and Skania has also been compared extensively with Primicaris Zhang et al. 2003. Skania and Primicaris have also been interpreted as juveniles (protaspides) of naraoiids (Hou and Bergström, 1997).

Description:

Morphology:

Skania has a single, undifferentiated, soft dorsal shield that is roughly kite-shaped. The dorsal shield is rounded at the front of the head, and tapers towards the posterior of the body, ending in a pair of short margin spines at the posterior end. At the point of maximum width there are sharp genal spines directed posteriorly. The posterior margin of the head is delineated by a narrow rim that is strongly arched forward, with the cephalic region occupying one-quarter of the exoskeletal length. A midgut is preserved in the axial region of the body trunk. Appendages are poorly preserved but consist of a pair of anterior antennae and ten or more paired body limbs.

Abundance:

Skania fragilis is known from fewer than 40 specimens in total.

Maximum Size:
17 mm

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

The ecology of Skania is poorly known because the details of its morphology remain enigmatic. The form of the appendages is assumed to be biramous based on the overall similarity with Primicaris, which possesses biramous appendages, meaning that both animals may have walked on the seafloor, using their filamentous appendages for oxygen exchange and occasional swimming. Skania lacks eyes, so it likely used its antennae to sense the environment. The feeding strategy is unknown.

References:

CONWAY MORRIS, S. 1993. Ediacaran-like fossil in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36: 593-635.

DELLE CAVE, L. AND A. M. SIMONETTA. 1975. Notes on the morphology and taxonomic position of Aysheaia (Onycophora?) and of Skania (undetermined phylum). Monitore Zoologico Italiano New Series, 9: 67-81.

GEHLING, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree, p. 181-223. In B. P. Radhakrishna (ed.), The world of Martin F. Glaessner. Geological Society of India, Bangalore.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

LIN, J., S. M. GON III, J. G. GEHLING, L. E. BABCOCK, Y. ZHAO, X. ZHANG, S. HU, J. YUAN M. YU AND J. PENG. 2006. A Parvancorina-like arthropod from the Cambrian of South China. Historical Biology, 18: 33-45.

SIMONETTA, A. M. AND E. INSOM. 1993. New animals from the Burgess Shale (Middle Cambrian) and their possible significance for the understanding of the Bilateria. Bolletino di Zoologia, 60: 97-107.

WALCOTT, C. D. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85: 1-46.

ZHANG, X., D. SHU AND D. H. ERWIN. 2007. Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. Palaeontological Society Memoir, 68: 1-52.

Other Links:

None

Sidneyia inexpectans

3D animation of Sidneyia inexpectans.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Unranked clade (stem group arthropods)
Species name: Sidneyia inexpectans
Remarks:

Sidneyia is usually considered to be closely related to the chelicerates, but its exact position relative to this group remains unclear (Budd and Telford, 2009). Sidneyia has been variously placed as the sister group to the chelicerates (Hou and Bergström, 1997), close to the crown on the chelicerate stem lineage (Bruton, 1981; Edgecombe and Ramsköld, 1999; Hendricks and Lieberman, 2008), or basal in the chelicerate stem lineage (Briggs and Fortey, 1989; Wills et al., 1998; Cotton and Braddy, 2004).

Described by: Walcott
Description date: 1911
Etymology:

Sidneyia – after Walcott’s son Sidney, who discovered the first specimen in August of 1910.

inexpectans – from the Latin inexpectans, “unexpected,” since Walcott did not expect to find such a fossil in strata older than the Ordovician.

Type Specimens: Lectotype –USNM57487 (S. inexpectans) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: A single specimen from the Chengjiang Fauna in China was used to describe a second species, Sidneyia sinica (Zhang et al. 2002), however this was later shown to be incorrectly attributed to Sidneyia (Briggs et al. 2008).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

Burgess Shale and vicinity: The Walcott, Raymond and Collins Quarries on Fossil Ridge, Mount Field and Mount Stephen – Tulip Beds (S7) and other smaller localities – Odaray Mountain and Stanley Glacier.

Other deposits: Sidneyia has been described from the Wheeler Formation (Briggs and Robison, 1984) and the Spence Shale (Briggs et al. 2008) in Utah, and the Kinzers Formation in Pennsylvania (Resser and Howell, 1938).

History of Research:

Brief history of research:

Sidneyia was the first fossil to be described by Walcott (1911) from the Burgess Shale. Further details were added by Walcott the following year (Walcott, 1912), and Strømer (1944) and Simonetta (1963) made minor revisions to Walcott’s reconstruction. A large appendage found in isolation was originally suggested to be the large frontal appendage of Sidneyia (Walcott, 1911), but this was later found to belong to the anomalocaridid Laggania (Whittington and Briggs, 1985). A major study by Bruton (1981) redescribed the species based on the hundreds of available specimens.

Description:

Morphology:

Sidneyia has a short, wide head shield that is convexly domed and roughly square. The two front lateral corners are notched to allow an antenna and a stalked eye to protrude. Other than the pair of antennae, which are long and thin with at least 20 segments, there are no cephalic appendages. The hemispherical and highly reflective eyes are above and posterior to the antennae.

The thorax of Sidneyia has nine wide, thin body segments that widen from the first to the fourth segment and then get progressively narrower posteriorly. The first four thoracic segments bear appendages with a large, spiny basal segment (the coxa) and 8 thinner segments, ending in a sharp claw. The next five thoracic appendages have a similar appendage but also have flap-like filaments in association with the limbs.

The abdomen consists of three circular rings that are much narrower than the thorax, with a terminal, triangular telson. The last segment of the abdomen has a pair of wide flaps that articulate with the telson to form a tail fan. A trace of the straight gut can be seen in some specimens extending from the anterior mouth to the anus on the telson, and pieces of broken trilobites are sometimes preserved in the gut.

Abundance:

Sidneyia is a relatively common arthropod in the Walcott Quarry, comprising 0.3% of the specimens counted (Caron and Jackson, 2008). Hundreds of specimens have been collected from the Walcott Quarry (Bruton, 1981) and in other nearby localities.

Maximum Size:
160 mm

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

Sidneyia walked and swam above the sea floor. Its anterior four thoracic appendages were used for walking, and the spiny basal coxa would crush food items and move them towards the mouth. The posterior five thoracic appendages were used for swimming, with the flap-like filaments undulating through the water column to create propulsion. These filaments were also likely used for breathing, like gills.

The predatory nature of Sidneyia is indicated by its spiny coxa used to masticate food, and the presence of crushed fossil debris in its gut. Sidneyia would have walked or swam above the sea floor, using its eyes and antennae to seek out prey, which it would capture and crush with its anterior appendages.

References:

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BRIGGS, D. E. G. AND R. A. ROBISON. 1984. Exceptionally preserved non-trilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, 111: 1-24.

BRIGGS, D. E. G., B. S. LIEBERMAN, J. R. HENDRICKS, S. L. HALGEDAHL AND R. D. JARRARD. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82(2): 238-254.

BRUTON, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 295: 619-653.

BUDD, G. E. AND M. J. TELFORD. 2009. The origin and evolution of arthropods. Nature, 457(7231): 812-817.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., R. GAINES, G. MANGANO, M. STRENG, AND A. DALEY. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the Southern Canadian Rockies. Geology, 38: 811-814.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

EDGECOMBE, G. D. AND L. RAMSKÖLD. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Jounral of Paleontology, 73: 263-287.

HENDRICKS , J. R. AND B. S. LIEBERMAN. 2008. Phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. Journal of Paleontology, 82: 585-594.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

RASSER, C. E. AND B. F. HOWELL. 1938. Lower Cambrian Olenellus zone of the Appalachians. Bulletin of the Geological Society of America, 49: 195-248.

SIMONETTA, A. M. 1963. Osservazioni sugli artropodi non trilobiti della Burgess Shale (Cambriano medio). II. Contributo: I Generai Sidneyia ed Amiella Walcott 1911. Monitore Zoologico Italiano, 70: 97-108.

STØMER, L. 1944. On the relationships and phylogeny of fossil and recent Arachnomorpha. Norsk Videnskaps-Akademi Skrifter I. Matematisk-Naturvidenskaplig Klasse, 5: 1-158.

WALCOTT, C. D. 1911. Middle Cambrian Merostomata. Cambrian geology and paleontology II. Smithsonian Miscellaneous Collections, 57: 17-40.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WHITTINGTON, H. B. AND D. E. G. BRIGGS. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British-Columbia. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 309: 569-609.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, pp. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

ZHU, X., H. JIAN AND S. DEGAN. 2002. New occurrence of the Burgess Shale arthropod Sidneyia in the Early Cambrian Chengjiang Lagerstätte (South China), and revision of the arthropod Urokodia. Alcheringa: An Australasian Journal of Palaeontology, 26: 1-18.

Other Links:

http://paleobiology.si.edu/burgess/sidneyia.html

Kootenia burgessensis

Kootenia burgessensis (ROM 60761). Disarticulated specimen. Specimen dry – direct light (left) and coated with ammonium chloride sublimate to show details (right). Specimen length = 44 mm. Walcott Quarry.

© Royal Ontario Museum. Photo: Jean-Bernard Caron

Taxonomy:

Kingdom: Nektobenthic
Phylum: Nektobenthic
Higher Taxonomic assignment: Trilobita (Order: Corynexochida)
Species name: Kootenia burgessensis
Remarks:

Trilobites are extinct euarthropods, probably stem lineage representatives of the Mandibulata, which includes crustaceans, myriapods, and hexapods (Scholtz and Edgecombe, 2006).

Described by: Resser
Description date: 1942
Etymology:

Kootenia – unspecified, but almost certainly for the Kootenay region of southeast British Columbia, or the derivative Kootenay River, both based upon the Ktunaxa or Kutenai First Nation of the same area.

burgessensis – from the Burgess Shale.

Type Specimens: Holotype (K. burgessensis) – USNM65511 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA (Resser, 1942); Type status under review – (K. dawsoni), University of Michigan Museum of Paleontology, Ann Arbor, Michigan, USA.
Other species:

Burgess Shale and vicinity: Kootenia dawsoni; Olenoides serratus. (Species of Kootenia are no longer considered different enough from those in Olenoides to warrant placement in a separate genus, but Kootenia is retained here for ease of reference to historical literature).

Other deposits: other species attributed to Kootenia are widespread in the Cambrian of North America, and have been recorded in Greenland, China, Australia, and elsewhere.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus –Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge, and nearby localities on Mount Field; K. dawsoni is known from the Trilobite Beds and elsewhere on Mount Stephen.

History of Research:

Brief history of research:

Kootenia burgessensis was established by Charles Resser based on material Walcott included in K. dawsoni. Kootenia originally appeared as a subgenus of Bathyuriscus in Walcott’s 1889 paper revising many of Rominger’s Mount Stephen trilobite identifications. Walcott named B. (Kootenia) dawsoni after G. M. Dawson of the Geological Survey of Canada as a replacement for what Rominger had illustrated as Bathyurus (?) in 1887.

In 1908, Walcott followed G. F. Matthew (1899) in calling this Dorypyge (Kootenia) dawsoni, but regarded Kootenia as a full genus in 1918. Harry Whittington included Kootenia burgessensis in his 1975 redescription of Burgess Shale appendage-bearing trilobites, illustrating a single specimen showing biramous thoracic limbs on one side. In 1994, Melzak and Westrop concluded that Kootenia could not be consistently discriminated from Olenoides using traditional characters of the spinose pygidium.

Description:

Morphology:

Hard parts: adult dorsal exoskeletons may reach 5.5 cm in length and are broadly oval in outline. In most general features, Kootenia burgessensis resembles the co-occurring Olenoides serratus, with a semi-circular cephalon bearing genal spines, a thorax of seven segments, and a semi-circular pygidium. In Kootenia, however, spines on the thoracic pleural tips and shorter and blunter, as are those around the margin of the pygidium; interpleural furrows on the pygidium are absent to very faint.

Unmineralized anatomy: based on evidence from just a few specimens, Kootenia burgessensis, like Olenoides serratus, had a pair of flexible, multi-jointed “antennae” followed by three pairs of biramous limbs on the cephalon. Pairs of similar biramous appendages were attached under each thoracic segment, with a smaller number under the pygidium. No specimens, however, show any evidence of posterior antenna-like cerci as in Olenoides.

Abundance:

Kootenia burgessensis is moderately common in the Walcott Quarry section on Fossil Ridge, as is Kootenia dawsoni in the Mount Stephen Trilobite Beds.

Maximum Size:
55 mm

Ecology:

Life habits: Nektobenthic
Feeding strategies: Nektobenthic
Ecological Interpretations:

Adult Kootenia burgessensis walked along the sea bed, possibly digging shallow furrows to locate small soft-bodied and weakly-shelled animals or carcasses. Kootenia could probably swim just above the sea bed for short distances. Tiny larvae and early juveniles probably swam and drifted in the water column.

References:

MATTHEW, G. F. 1899. Studies on Cambrian faunas, No. 3. Upper Cambrian Fauna of Mount Stephen, British Columbia: The trilobites and worms. Transactions of the Royal Society of Canada, Series 2, Vol. 5, Section IV:39-66.

MELZAK, A. AND S. R. WESTROP. 1994. Mid-Cambrian (Marjuman) trilobites from the Pika Formation, southern Canadian Rocky Mountains, Alberta. Canadian Journal of Earth Sciences, 31:969-985.

RASETTI, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections, 116 (5): 1-277.

RESSER, C. E. 1942. Fifth contribution to nomenclature of Cambrian trilobites. Smithsonian Miscellaneous Collections, 101 (15): 1-58.

RESSER, C. E. 1942. Fifth contribution to nomenclature of Cambrian trilobites. Smithsonian Miscellaneous Collections, 101 (15): 1-58.

ROMINGER, C. 1887. Description of primordial fossils from Mount Stephens, N. W. Territory of Canada. Proceedings of the Academy of Natural Sciences of Philadelphia, 1887: 12-19.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216: 395-415.

WALCOTT, C. 1889. Description of new genera and species of fossils from the Middle Cambrian. United States National Museum, Proceedings for 1888:441-446.

WALCOTT, C. D. 1908. Mount Stephen rocks and fossils. Canadian Alpine Journal, 1: 232-248.

WALCOTT, C. 1918. Cambrian Geology and Paleontology IV. Appendages of trilobites. Smithsonian Miscellaneous Collections, 67(4): 115-216.

WHITTINGTON, H. B. 1975. Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. Fossils and Strata, No. 4: 97-136.

Other Links: