The Burgess Shale

Worthenella cambria

Worthenella cambria (USNM 57643) – Holotype, part and counterpart. Left, plate 22 of Walcott (1911), showing a retouched image of the original specimen described (figure 2) together with other “worms.” Right, images of the same specimen. Specimen length = 60 mm. Specimen wet – direct light (left column), dry – polarized light (right column). Walcott Quarry.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Unranked clade (stem group arthropods)
Species name: Worthenella cambria
Remarks:

This animal is related to arthropods, but its systematic status within this group is unknown (Briggs and Conway Morris, 1986).

Described by: Walcott
Description date: 1911
Etymology:

Worthenella – Possibly after the American palaeontologist Amos Henry Worthen, who died in 1888, just as Walcott’s career was taking off.

cambria – from the Welsh Cambria meaning Wales, in reference to the age of the fossil.

Type Specimens: Holotype –USNM57643 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none

Other deposits: none

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Worthenella was first described by Walcott from a single specimen in a 1911 monograph dealing with various Burgess Shale worms. Walcott interpreted this animal as a polychaete annelid (or bristle worm), in the same family as the animal Wiwaxia (which is now interpreted as a primitive mollusc). However, this interpretation was questioned (Conway Morris, 1979), and the affinities of Worthenella have remained difficult to establish because this singular fossil is too poorly known (Briggs and Conway Morris, 1986).

Description:

Morphology:

The animal is elongate with a small head and bears at least 46 segments of similar dimensions. Appendages or tentacles are present beneath the head, but their preservation is poor and it is difficult to know their precise nature and arrangement. The anterior 34 segments seem to bear filamentous branches on their ventral sides, with the following 8 segments equipped with longer appendages. The gut is straight and the anus is terminal.

Abundance:

This animal is known from a single specimen.

Maximum Size:
60 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

Not enough is known about this organism to interpret its ecology.

References:

BRIGGS, D. E. G. AND S. CONWAY MORRIS. 1986. Problematica from the Middle Cambrian Burgess Shale of British Columbia, p. 167-183. In A. Hoffman and M. H. Nitecki (eds.), Problematic fossil taxa (Oxford Monographs on Geology and Geophysics No. 5). Oxford University Press & Clarendon Press, New York.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

Other Links:

None

Wiwaxia corrugata

3D animation of Wiwaxia corrugata grazing on Morania confluens.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Unranked clade halwaxiids (stem group molluscs)
Species name: Wiwaxia corrugata
Remarks:

The relationship of Wiwaxia is hotly debated; its similarities to the molluscs have been highlighted (Conway Morris, 1985; Scheltema et al., 2003; Caron et al., 2006; Caron et al., 2007), but Matthew’s original view that it was related to the annelid worms (Matthew, 1899) still finds some adherents (Butterfield, 1990; Conway Morris and Peel, 1995; Butterfield, 2006; 2008). It is also possible that Wiwaxia branched off before the molluscs and annelids diverged (Eibye-Jacobsen, 2004). Wiwaxia has recently been placed in a group called the halwaxiids, along with the halkieriids, Orthrozanclus, and Odontogriphus (Conway Morris and Caron, 2007).

Described by: Matthew
Description date: 1899
Etymology:

Wiwaxia – from Wiwaxy Peaks (2,703 m) in Yoho National Park. The word wiwaxy is originally from the Stoney First Nation Nakoda language, meaning “windy.”

corrugata – from the Latin corrugis, “folded, or wrinkled,” in reference to the wrinkled aspect of the sclerites.

Type Specimens: Holotype –ROM8596 in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none described, although sclerites have been reported from a number of Middle Cambrian deposits extending from northern Canada (Butterfield, 1994) to China (Zhao et al., 1994).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge. The Trilobite Beds, Tulip Beds (S7) and Collins Quarry on Mount Stephen. Additional smaller localities are known on Mount Field and Mount Odaray.

History of Research:

Brief history of research:

In an early review of fossils collected from the Trilobite Beds on Mount Stephen by Walker, Canadian palaeontologist G. F. Matthew (1899) described several forms he thought represented tubes of various annelid worms, including one he named Orthotheca corrugata. At the time, Matthew did not know this particular fossil was only part of a much larger organism. It was only when Walcott (1911) discovered articulated and much better preserved specimens from the Phyllopod Bed that the morphology of this species became clearer. Walcott placed corrugata in his new genus Wiwaxia and interpreted it as a polychaete annelid worm (Walcott, 1911). The single best specimen of Walker’s “Orthotheca corrugata” remained unrecognized until it was “rediscovered” in the ROM collections in 1977.

Walcott’s interpretation was called into question in a comprehensive reassessment of the genus (Conway Morris, 1985), and Conway Morris’s link between Wiwaxia mouthparts and the molluscan radula was built upon by Scheltema et al. (2003) and Caron et al. (2006). Butterfield (1990), however, defended an annelid affinity mostly based on the study of individual sclerites, first at the crown-, and later at the stem-group level (Butterfield, 2003; 2006), but further work suggested that the evidence does not conclusively support a close relationship with annelids (Eibye-Jacobsen, 2004). A connection with the halkieriids was drawn early on (Bengtson and Morris, 1984; Conway Morris and Peel, 1995), and expanded more recently (Conway Morris and Caron, 2007).

Other studies have dealt more specifically with the ecology and taphonomy of this animal. The finely spaced patterning of ridges on the scale may have given Wiwaxia an iridescent aspect in life (Parker, 1998). Wiwaxia has proven useful in calculating the extent of decay in fossil assemblages (Caron and Jackson, 2006) and in reconstructing the longer term taphonomic processes responsible for the preservation of the Burgess Shale fossils (Butterfield et al., 2007).

Description:

Morphology:

Wiwaxia corrugata is a slug-like organism up to 5.5 cm in length almost entirely covered (except on the ventral surface) with an array of scale-like elements referred to as sclerites and spines. The body is roughly oval, and lacks evidence of segmentation. The body-covering sclerites are arranged in about 50 rows. In addition, two rows of 7–11 blade-like spines are present on the dorsal surface. Spines and sclerites were inserted directly into the body wall. Wiwaxia’s feeding apparatus consists of two (in rare cases three) toothed plates that have been compared to a molluscan radula or annelid jaws.

Abundance:

Wiwaxia is mostly known from the Walcott Quarry where it is relatively common, representing 0.9% of the specimens counted in the community (Caron and Jackson, 2008).

Maximum Size:
55 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

The similarity of Wiwaxia’s feeding apparatus to that of Odontogriphus suggests that it too fed on the cyanobacterial Morania mats growing on the Cambrian sea floor. Its sclerite armour-plating and long spines, sometimes found broken, suggest that it was targeted by unidentified predators.

References:

BENGSTON, S. AND S. CONWAY MORRIS, 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17:307-329.

BUTTERFIELD, N. J. 1990. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology: 287-303.

BUTTERFIELD, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369(6480): 477-479.

BUTTERFIELD, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43:166-177.

BUTTERFIELD, N. J. 2006. Hooking some stem-group “worms”: fossil lophotrochozoans in the Burgess Shale. BioEssays, 28: 1161-1166.

BUTTERFIELD, N. J. 2008. An early Cambrian radula. Journal of Paleontology, 82(3): 543-554.

CARON, J.-B. AND D. A. JACKSON, 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., A. H. SCHELTEMA, C. SCHANDER AND D. RUDKIN, 2006. A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442(7099): 159-163.

CARON, J.-B., A. H. SCHELTEMA, C. SCHANDER AND D. RUDKIN. 2007. Reply to Butterfield on stem-group “worms:” fossil lophotrochozoans in the Burgess Shale. BioEssays, 29:200-202.

CONWAY MORRIS, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, Series B, 307(1134): 507-582.

CONWAY MORRIS, S. AND J.-B. CARON, 2007. Halwaxiids and the Early Evolution of the Lophotrochozoans. Science, 315(5816): 1255-1258.

CONWAY MORRIS, S. AND J. S. PEEL, 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 347(1321): 305-358.

EIBYE-JACOBSEN, D. 2004. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia, 37(3): 317-335.

MATTHEW, G. F. 1899. Studies on Cambrian Faunas, No. 3. Upper Cambrian fauna, Mount Stephen, British Columbia. The trilobites and worms. Transactions of the Royal Society, 5: 39-66.

PARKER, A. R. 1998. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proceedings of the Royal Society B: Biological Sciences, 265(1400): 967.

SCHELTEMA, A. H., K. KERTH AND A. M. KUZIRIAN, 2003. Original molluscan radula: Comparisons among Aplacophora, Polyplacophora, Gastropoda, and the Cambrian fossil Wiwaxia corrugata. Journal of Morphology, 257(2): 219-245.

WALCOTT, C. D. 1911. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(2): 109-144.

ZHAO, Y.-l., Y. QIAN AND X.-S. LI, 1994. Wiwaxia from Early-Middle Cambrian Kaili Formation in Taijiang, Guizhou. Acta Palaeontologica Sinica, 33:359-366.

Other Links:

http://www.paleobiology.si.edu/burgess/wiwaxia.html

Waputikia ramosa

3D animation of Waputikia ramosa.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Non applicable
Species name: Waputikia ramosa
Remarks:

No revisions of this alga have been published since its original description by Walcott (1919) and its affinities remain uncertain.

Described by: Walcott
Description date: 1919
Etymology:

Waputikia – from the Waputik Icefield, a glacier in Yoho National Park, east of the Burgess Shale.

ramosa – from the Latin ramosus, “full of branches,” in reference to the presence of clumps of branches.

Type Specimens: Syntypes –USNM35409, 35410, 35411 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

This genus was described by Charles Walcott (1919) as a possible red alga. However, like all the algae from the Burgess Shale, it awaits a modern redescription.

Description:

Morphology:

Waputikia has a large central stem with wide branches at irregular intervals. The large branches divide dichotomously (into two), and the smaller tertiary or quaternary branches divide into much finer branches forming small terminal bush-like structures.

Abundance:

Waputikia is very rare and represents only 0.02% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
60 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

No attachment structure for this alga has been preserved but it probably lived attached to the sea floor.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

WALCOTT, C. 1919. Cambrian Geology and Paleontology IV. Middle Cambrian Algae. Smithsonian Miscellaneous Collections, 67(5): 217-260.

Other Links:

None

Wapkia grandis

3D animation of Wapkia elongata and other sponges (Choia ridleyiDiagoniella cyathiformisEiffelia globosaHazelia confertaPirania muricata, and Vauxia bellula) and Chancelloria eros a sponge-like form covered of star-shaped spines.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Demospongia (Order: Monaxonida)
Species name: Wapkia grandis
Remarks:

Wapkia is considered a primitive demosponge (Rigby, 1986). Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Described by: Walcott
Description date: 1920
Etymology:

Wapkia – origin of name is unknown

grandis – from the Latin grandis, “large.” This name refers to the large size and complex skeleton of this sponge.

Type Specimens: Lectotype –USNM66458 (W. grandis), in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. Holotype –ROM53544 (W. elongata), in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: W. elongata Rigby and Collins, 2004 from the Tulip Beds (S7) on Mount Stephen.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge. The Tulip Beds (S7) on Mount Stephen.

History of Research:

Brief history of research:

Wapkia was described by Walcott in his initial description of the Burgess Shale sponges in 1920. The genus was re-examined by Rigby in 1986. Rigby and Collins (2004) also redescribed the genus and proposed a new species, W. elongata.

Description:

Morphology:

Wapkia is a large elongate or oval sponge with bundles of coarse and fine spicules aligned in long vertical columns and distinct horizontal bundles. The surface of the sponge is smooth and lacks any vertical or horizontal ridges. Spicules are straight and pointed at both ends (oxeas). The exact position of the various bundles of spicules in the skeleton is still uncertain, but it seems that the inner part of the skeleton is reticulate with horizontal wrinkles that are typical of the species and produced by horizontal bundles of spicules. The dermal layer is formed by bundles of oxeas up to 60 mm long which give a characteristic plumose aspect to this sponge. W. elongata is distinguished from W. grandis based on the overall shape of the sponge and different skeletal structures (varying distance between the horizontal spicule bundles).

Abundance:

Wapkia is rare and represents only 0.06% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
170 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

Wapkia would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None

Walcottidiscus typicalis

Walcottidiscus typicalis (GSC 45368). Complete but poorly preserved specimen. Specimen diameter = 18 mm. Specimen dry – direct light. Walcott Quarry.

© GEOLOGICAL SURVEY OF CANADA. PHOTO: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Edrioasteroidea (Order: Edrioasteroida, stem group echinoderms)
Species name: Walcottidiscus typicalis
Remarks:

Walcottidiscus is a poorly known edrioasteroid, an extinct group of echinoderms (Smith, 1985).

Described by: Bassler
Description date: 1935
Etymology:

Walcottidiscus – from Charles Walcott, the discoverer of the Burgess Shale, and the Greek diskos, “disc.” The name refers to the flattened appearance of the fossils.

typicalis – from the Greek typikos, “type,” perhaps in reference to the single specimen originally described.

Type Specimens: Holotype –USNM90754 (W. typicalis),USNM90755 (W. magister) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: W. magister Bassler, 1935 from the Walcott Quarry on Fossil Ridge (but see below paragraph brief history of research).

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Two species known from a single specimen each were originally described by Bassler in 1935 and 1936: a small form W. typicalis, and a larger form W. magister respectively. However, W. magister is now thought to belong to W. typicalis (Smith, 1985) but additional fossil material would be required to confirm this hypothesis. Walcottidiscus resembles Kailidiscus chinensis, a chinese form from the Middle Cambrian Kaili deposit, but remains too poorly known to draw more detailed comparisons between the two genera (Zhao et al., 2010).

Description:

Morphology:

The body (theca) is ovoid in outline and has a relatively small dorsal surface compared to the ventral one. The upper central part of the theca is not calcified, but the outer zone is composed of small calcified plates. A five star-shaped food groove lined with small plates (the ambulacra) is present on the upper surface. The five arms of the ambulacra are arranged in a 2:1:2 fashion around the mouth, and they are at first straight and then turn to the left near the edge of the theca. Differences between the two species are the size and degree of ambulacral curvature, but those differences could simply be a factor of growth.

Abundance:

Walcottidiscus is very rare only two specimens were originally described. A few additional specimens are known in the Burgess Shale collections of the Geological Survey of Canada and the Royal Ontario Museum.

Maximum Size:
64 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

Walcottidiscus was most likely resting on the seafloor. Food particles were transported by food grooves (ambulacrum) into a central mouth at the top of the theca.

References:

BASSLER, R. S. 1935. The classification of the Edrioasteroidea. Smithsonian Miscellaneous Collections, 93: 1-11.

BASSLER, R. S. 1936. New species of American Edrioasteroidea. Smithsonian Miscellaneous Collections, 95: 1-33.

SMITH, A. B. 1985. Cambrian eleutherozoan echinoderms and the early diversification of edrioasteroids. Palaeontology, 28: 715-756.

ZHAO, Y., C. D. SUMRALL, R. L. PARSLEY AND J. I. N. PENG. 2010. Kailidiscus, a new plesiomorphic edrioasteroid from the basal Middle Cambrian Kaili biota of Guizhou province, China. Journal of Paleontology, 84: 668-680.

Other Links:

None

Wahpia insolens

Wahpia insolens (USNM 35424) – Syntype. Specimen showing typical mode of branching. Specimen length = 90 mm. Specimen wet – direct light (left), polarized light (right). Trilobite Beds on Mount Stephen.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Non applicable
Species name: Wahpia insolens
Remarks:

No revisions of this alga have been published since its original description by Walcott (1919) and its affinities remain uncertain.

Described by: Walcott
Description date: 1919
Etymology:

Wahpia – unspecified.

insolens – from the Latin insolens, “unusual, different.” This probably refers to the unusual branches of this alga.

Type Specimens: Syntypes –USNM35423-35424 (W. insolens); Holotypes –USNM35413 (W. mimica);USNM35425 (W. virgata) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: W. mimica Walcott, 1919 and W. virgata Walcott, 1919 from the Walcott Quarry.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge. The Trilobite Beds on Mount Stephen.

History of Research:

Brief history of research:

Wahpia was described by Charles Walcott (1919) as a possible red alga. However, like all the algae from the Burgess Shale, it awaits a modern redescription.

Description:

Morphology:

This simple alga has a long central stem with long narrow branches diverging from it at a 45 degree angle; these branches give rise to smaller branches with up to two additional branchings. The central stem is hollow. W. mimica and W. virgata differ from W. insolens based on size differences of the central stem and the number and flexibility of the branches.

Abundance:

Wahpia is very rare and represents only 0.06% of the Walcott Quarry community (Caron and Jackson, 2008).

Maximum Size:
90 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

The morphology of this alga suggests it was attached to the sea floor rather than being free floating.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

WALCOTT, C. 1919. Cambrian Geology and Paleontology IV. Middle Cambrian Algae. Smithsonian Miscellaneous Collections, 67(5): 217-260.

Other Links:

None

Vauxia gracilenta

3D animation of Vauxia bellula and other sponges (Choia ridleyiDiagoniella cyathiformisEiffelia globosaHazelia confertaPirania muricata, and Wapkia elongata) and Chancelloria eros a sponge-like form covered of star-shaped spines.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Demospongea (Order: Verongida)
Species name: Vauxia gracilenta
Remarks:

Vauxia was placed within the hexactinellids by Walcott in his 1920 original description but Rigby (1980) transferred the genus and family to the Demospongea. Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Described by: Walcott
Description date: 1920
Etymology:

Vauxia – from Mount Vaux (3,319 m), a mountain Peak in Yoho National Park, British Columbia. The name refers to William Sandys Wright Vaux (1818-1885) an antiquarian at the British Museum.

gracilenta – from the Latin gracilis, “slender,” referring to the delicate structure of the sponge.

Type Specimens: Lectotypes –USNM66515 (V. gracilenta),USNM66508 (V. bellula),USNM66517 (V. densa),USNM66520 (V. venata), in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. Holotype –ROM53572 (V. irregulara) in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: V. bellula Walcott, 1920; V. densa Walcott, 1920; V. irregulara Rigby and Collins, 2004; V. venata Walcott, 1920.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

Burgess Shale and vicinity: Vauxia species are known in the Walcott, Raymond and Collins Quarries on Fossil Ridge, the Trilobite Beds, Tulip Beds (S7) and the Collins Quarry on Mount Stephen, and smaller sites on Mount Field and Odaray Mountain. Vauxia is also known from Monarch in Kootenay National Park.

Other deposits: V. bellula Walcott, 1920 from the Middle Cambrian Wheeler and Marjum Formations in Utah (Rigby et al., 2010); V. magna Rigby, 1980 from the Middle Cambrian Spence Shale in Utah (Rigby, 1980).

History of Research:

Brief history of research:

This sponge was originally described by Walcott in 1920. The genus was reviewed by Rigby (1980) and the species redescribed by Rigby (1986) and Rigby and Collins (2004) in their examination of the Burgess Shale sponges.

Description:

Morphology:

Specimens of Vauxia gracilenta can range from simple unbranched forms to more complex branching forms and reach up to 8 cm in height. Each branch is deeply conical and almost cylindrical, with a simple open central cavity (spongocoel) ending in a rounded of flat opening (osculum). The skeleton is double layered with a thin dermal layer and an inner layer (endosomal). The dermal layer has small openings (ostia) and is composed of a dense network of ladder-like fibers supported by radial fibers from the inner layer. The inner layer forms a regular reticulated net-like skeleton of fibers with 4-6 sided polygons which is characteristic of the genus and species. The fibrous elements (spongin) represent tough collagen proteins. There is no evidence of siliceous spicules in the skeleton.

The different species have been identified mostly based on variations of the skeletal elements and the shape of the branches. Some species can reach up to at least 15 cm in height (V. bellulaV. densa).

Abundance:

Vauxia is relatively common in the Raymond Quarry and other sites on Mount Stephen but is rare in the Walcott Quarry where it represents less than 0.05% of the community (Caron and Jackson, 2008).

Maximum Size:
80 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

Vauxia would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1980. The new Middle Cambrian sponge Vauxia magna from the Spence Shale of Northern Utah and taxonomic position of the Vauxiidae. Journal of Paleontology, 54(1): 234-240.

RIGBY, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2: 1-105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

RIGBY, J. K., S. B. CHURCH AND N. K. ANDERSON. 2010. Middle Cambrian Sponges from the Drum Mountains and House Range in Western Utah. Journal of Paleontology, 84: 66-78.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Other Links:

None

Ulospongiella ancyla

Ulospongiella ancyla (ROM 43830) – Holotype. Nearly complete individual. Specimen height = 19 mm. Specimen dry – direct light (left), wet – polarized light (right). Trilobite Beds on Mount Stephen.

© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Demospongea (Order: Monaxonida)
Species name: Ulospongiella ancyla
Remarks:

Ulospongiella is considered a primitive demosponge (Rigby, 1986). Demosponges, the same group that are harvested as bath sponges, represent the largest class of sponges today.

Described by: Rigby and Collins
Description date: 2004
Etymology:

Ulospongiella – from the Greek oulus, “wooly or curly,” and spongia, “sponge.” The name refers to the curled or curved spicules forming the skeleton.

ancyla – from the Greek anklyos, “bent or hooked.” The name makes reference to the curved spicules.

Type Specimens: Holotype –ROM43830 (wrongly referred asROM48830 in Rigby and Collins 2004) in the Royal Ontario Museum, Toronto, Canada.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Trilobite Beds on Mount Stephen.

History of Research:

Brief history of research:

Ulospongiella was described by Rigby and Collins in 2004 based on collections made by the Royal Ontario Museum.

Description:

Morphology:

Ulospongiella is a small sponge less than 2 cm in height. Its shape is subcyclindrical with a rounded base. Most spicules forming the skeleton are pointed at both ends (oxeas). These oxeas are strongly curved or hooked shape and form a relatively dense mesh. A few coarser and longer spicules with a round base extend upward from the wall. There is no clear indication of canals within the sponge there is no evidence of a central cavity (spongocoel).

Abundance:

Only three specimens are known, all from the Trilobite Beds.

Maximum Size:
19 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

Ulospongiella would have lived attached to the sea floor. Particles of organic matter were extracted from the water as they passed through canals in the sponge’s wall.

References:

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

Other Links:

None

Tubulella flagellum

Tubulella flagellum (ROM 59942) – Proposed Lectotype. Figures 1a of Matthew (1899) and photograph of original specimen (right). Approximate specimen length = 80 mm. Specimen dry – direct light. Trilobite Beds on Mount Stephen.

© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Unranked clade (stem group cnidarians)
Species name: Tubulella flagellum
Remarks:

This fossil was originally thought to represent the tube of some sedentary polychaete worms (Matthew, 1899; Howell, 1949), but has more recently been compared to the sessile polyp stage of a scyphozoan jellyfish that builds tapered, chitinous tubes fixed to the substrate by an attachment disc (Van Iten et al., 2002).

Described by: Matthew
Description date: 1899
Etymology:

Tubulella – from the latin tubulus, “tube, or tubule,” and the suffix –ella, denoting “little.”

flagellum – the Latin for “whip,” in allusion to the long, tapering form of the tubular theca.

Type Specimens: Syntype–ROM59942 in the Royal Ontario Museum, Toronto, ON, Canada.
Other species:

Burgess Shale and vicinity: Many shared similarities suggest that other thecate Burgess Shale fossils such as Byronia annulataSphenothallus sp., Cambrorhytium major, and Cfragilis may be related to Tubulella.

Other deposits: Other species occur worldwide in rocks from the Cambrian period.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Trilobite Beds, Tulip Beds (S7) and additional smaller localities on Mount Stephen. The Walcott and Raymond Quarries on Fossil Ridge, Mount Odaray and Monarch Cirque.

History of Research:

Brief history of research:

In August 1887 the Toronto meeting of the British Association for the Advancement of Science was followed by a special geological rail tour to western Canada organized by Byron Edmund Walker (a prominent Canadian banker). One of the excursion highlights was a visit to the Mount Stephen Trilobite Beds, after which Walker loaned his personal collection of Mount Stephen fossils to Canada’s leading Cambrian palaeontologist, George F. Matthew, of Saint John, New Brunswick. In 1899, Matthew published a series of new descriptions based on this material, including Urotheca flagellum, a rare form he interpreted as whip-shaped worm tube, illustrated in two engravings. Walker donated these fossils to the University of Toronto in 1904, and in 1913 they were transferred to the new Royal Ontario Museum of Palaeontology. In 1949, American palaeontologist B. F. Howell found that Matthew’s genus name Urotheca was already in use for a living reptile, so he substituted it for the new name Tubulella. Subsequently, this and similar fossils were reinterpreted as cnidarian polyp thecae. The single best specimen of Walker’s Urotheca flagellum remained unrecognized until it was “rediscovered” in the ROM collections in 2010.

Description:

Morphology:

The chitinous or chitinophosphatic tube (theca) of Tubulella flagellum is a very long and slender cone, with a maximum diameter of about 4 mm. The thecae may be almost straight, or show varying degrees of curvature. The thecal wall is relatively thick and often appears densely black against the shale matrix. The external surface shows very fine transverse growth lines, but usually no strong annular ridges. Often, two or more lengthwise creases or ridges were formed as the result of the crushing and compaction of the tube’s original circular or oval cross section. Some specimens possess a combination of features seen in Tubulella and Byronia, with very narrow thecae bearing both annulae and longitudinal creases. Small clusters of such Tubulella-like thecae are occasionally found closely associated with Byronia annulata, but it is not known whether these were asexually generated “buds” or discrete organisms growing attached to the larger tubes. No soft tissues of Tubulella flagellum have been described to date.

Abundance:

Uncommon in the Trilobite Beds on Mount Stephen. Relatively common in the Walcott Quarry on Fossil Ridge where it represents about 0.25% of the specimens in the community (Caron and Jackson, 2008).

Maximum Size:
100 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

The theca of Tubulella was likely attached to the substrate using an apical disc which is usually broken off. The absence of soft tissue preservation makes the assignment to a particular feeding strategy tentative. By comparison with forms such as Cambrorhytium, a carnivorous or suspension feeding habit seems possible.

References:

BISCHOFF, C. O. 1989. Byroniida new order from early Palaeozoic strata of eastern Australia (Cnidaria, thecate scyphopolyps). Senkenbergiana Lethaea, 69(5/6): 467-521.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. AND R. A. ROBISON. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions, Paper 122: 48 pp.

HOWELL, B. F. 1949. New hydrozoan and brachiopod and new genus of worms from the Ordovician Schenectady Formation of New York. Bulletin of the Wagner Free Institute of Science, 24(1): 8 pp.

MATTHEW, G. F. 1899. Studies on Cambrian faunas, No. 3. Upper Cambrian fauna of Mount Stephen, British Columbia. The trilobites and worms. Transactions of the Royal Society of Canada, Series 2, 4: 39-66.

RASETTI, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections, 116(5): 277 pp.

VAN ITEN, H., M.-Y. MAO-YAN, AND D.COLLINS 2002. First report of Sphenothallus Hall, 1847 in the Middle Cambrian. Journal of Paleontology, 76: 902-905.

WALCOTT, C. D. 1908. Mount Stephen rocks and fossils. Canadian Alpine Journal, 1: 232-248.

ZHU, M.-Y., H. VAN ITEN, R. S. COX, Y.-L. ZHAO AND B.-D. ERDTMANN. 2000. Occurrence of Byronia Matthew and Sphenothallus Hall in the Lower Cambrian of China. Paläontologische Zeitschrift, 74: 227-238.

Other Links:

None

Thaumaptilon walcotti

Thaumaptilon walcotti (USNM 468028) – Holotype, part and counterpart. Complete specimen. Specimen height = 212 mm. Specimen dry – direct light (far left and far right), wet – polarized light (middle images). Walcott Quarry.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Kingdom: Epibenthic
Phylum: Epibenthic
Higher Taxonomic assignment: Unranked clade (stem group cnidarians)
Species name: Thaumaptilon walcotti
Remarks:

Thaumaptilon was first interpreted as a Cambrian member of the frondose Ediacaran Biota, related to cnidarians and particularly to a group of modern anthozoans called pennatulaceans or sea pens (Conway Morris, 1993). This connection is no longer widely accepted (Antcliffe and Brasier, 2008); Thaumaptilon has also been proposed as a critical link between Ediacaran fronds and ctenophores (Dzik, 2002). A position in the cnidarian stem group (i.e. more primitive than the anthozoans) has been supported by the discovery of similar fossils in the Chengjiang Biota (Shu et al., 2006).

Described by: Conway Morris
Description date: 1993
Etymology:

Thaumaptilon – from the Greek thauma, “wonderful,” and ptilon, “soft feather,” after its feather-like appearance.

walcotti – after Charles Walcott, discoverer of the Burgess Shale.

Type Specimens: Holotype –USNM468028 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Walcott had studied and photographed Thaumaptilon, but never published his work. The fossil specimens were formally described in 1993 by Conway Morris, who had also alluded to them in previous work (1979; 1989; 1990).

Description:

Morphology:

Thaumaptilon is an oblong frond that somewhat resembles a feather; it is bilaterally symmetrical, with a central axis supporting a number of lateral branches. The branches appear to be connected to one another by narrow canals. A blunt holdfast attached the animal to the sea floor. Of the three known specimens, the largest is 21 cm tall and reaches 5 cm across; the smaller specimens – presumed to be juveniles – are only a few centimetres long. The frond is flattened, and tapers slightly towards its tip. It consists of about three dozen branches angled at 45º to the central axis, and primarily grew by inflation – perhaps with some addition of branches by apical budding. Unlike modern sea pens, Thaumaptilon’s branches attach to a common base. Lines of pustules on one side of the frond have been interpreted as retracted zooids (individual members of a colonial organism), which are arranged very haphazardly in comparison to the neat combs seen in modern sea pens.

Abundance:

Only three specimens are known.

Maximum Size:
210 mm

Ecology:

Life habits: Epibenthic
Feeding strategies: Epibenthic
Ecological Interpretations:

The holdfast would have anchored the organism to the soft sediment of the sea floor, and could perhaps contract to adjust the height and angle of the frond. Based on the interpretation of the pustules as zooids, a colonial, suspension-feeding lifestyle has been proposed. It has been suggested that Thaumaptilon could retract into its stem when threatened, for protection (Conway Morris, 1998).

References:

ANTCLIFFE, J. B. AND M. D. BRASIER. 2008. Charnia at 50: Developmental models for Ediacaran fronds. Palaeontology, 51(1): 11-26.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

CONWAY MORRIS, S. 1989. Burgess Shale faunas and the Cambrian explosion. Science, 246(4928): 339.

CONWAY MORRIS, S. 1990. Late Precambrian and Cambrian soft-bodied faunas. Annual Review of Earth and Planetary Sciences, 18(1): 101-122.

CONWAY MORRIS, S. 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36(3): 593-635.

CONWAY MORRIS, S. 1998. The Crucible of Creation, the Burgess Shale and the Rise of Animals. Oxford University Press, 242 p.

SHU, D. G., S. CONWAY MORRIS, J. HAN, Y. LI, X. L. ZHANG, H. HUA, Z. F. ZHANG, J. N. LIU, J. F. GUO, Y. YAO AND K. YASUI. 2006. Lower Cambrian vendobionts from China and early diploblast evolution. Science, 312(5774): 731-734.

Other Links:

http://paleobiology.si.edu/burgess/thaumaptilon.html