Les schistes de Burgess

Yuknessia simplex

Reconstitution 3D de Yuknessia simplex.
Reconstitution 3d De Phlesch Bubble © Musée Royal De L’ontario

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Sans object
Nom d’espèce: Yuknessia simplex
Remarques:

À l’instar de Walcott (1919), Conway Morris et Robison (1988) considéraient Yuknessia comme une algue verte. Toutefois, comme aucune nouvelle description du matériel type des schistes de Burgess n’a été publiée depuis la description initiale, les affinités phylogénétiques du genre demeurent incertaines.

Nom du descripteur: Walcott
Date de la description : 1919
Étymologie :

Yuknessia – d’après le mont Yukness (2 847m), pic situé dans le parc national du Canada Yoho, à l’est des schistes de Burgess.

simplex – du latin simplex, « simple », en référence à la simplicité de la morphologie de cette algue.

Spécimens types : Holotype – USNM 35406 conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : Yuknessia sp., de la formation de Niutitan du Cambrien inférieur, en Chine (Yang et al., 2003).

Âge et Sites

Age :
Cambrien moyen, de la zone à Bathyuriscus-Elrathina à la zone Ptychagnostus punctuosus (environ 505 millions d’années).
Sites principaux :

Schistes de Burgess et environs : carrière Walcott sur la crête aux Fossiles; couches à trilobites sur le mont Stephen.

Autres dépôts : à Y. simplex, des schistes de Spence du Cambrien moyen et des formations de Marjum et de Wheeler, dans l’Utah (Conway Morris et Robison, 1988).

Histoire de la recherche

Bref historique de la recherche :

Charles Walcott (1919) a décrit ce genre comme une possible algue verte. Une redescription non seulement du genre mais de toutes les algues des schistes de Burgess s’impose toutefois (voir Dalyia). Conway Morris et Robison (1988) ont décrit des spécimens de l’espèce récoltés dans plusieurs dépôts de l’Utah.

Description

Morphologie :

Cette algue est constituée de longues branches qui émergent d’une tige creuse courte mais large couverte d’éléments ou de plaques coniques de petite taille. Ces plaques correspondent aux points d’attache des branches à la tige et présentent d’étroites similitudes avec celles de Dalyia, ce qui laisse supposer l’existence d’une synonymie entre les deux espèces. Yuknessia formerait la structure principale de la tige, et Dalyia, les branches.

Abondance :

Yuknessia est très rare; il représente seulement 0,04 % de la faune de la carrière Walcott (Caron et Jackson, 2008).

Taille maximum :
30 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

Le fort calibre de la tige semble indiquer que l’espèce vivait fixée au fond marin, dans la zone photique, plutôt que de flotter librement.

Références

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. AND R. A. ROBISON. 1988. More soft-bodied animals from the Middle Cambrian of Utah and British Columbia. University of Kansas Paleontological Contributions, 122 p.

WALCOTT, C. 1919. Cambrian Geology and Paleontology IV. Middle Cambrian Algae. Smithsonian Miscellaneous Collections, 67(5): 217-260.

YANG, R., W. ZHANG, L. JIANG AND H. GAO. 2003. Chengjiang biota from the Lower Cambrian Niutitang Formation, Zunyi County, Guizhou Province, China. Acta Palaeontologica Sinica, 77: 145-150.

Autres liens :

Aucun

Odontogriphus omalus

Reconstitution 3D d’Odontogriphus omalus.

MODÈLE 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Halwaxiidés (Clade non classé, groupe souche des mollusques )
Nom d’espèce: Odontogriphus omalus
Remarques:

Odontogriphus est un membre primitif du groupe souche des mollusques (Caron et al., 2006; Sigwart et Sutton, 2007) ou un membre du groupe souche des lophotrochozoaires, lesquels incluent les mollusques, les annélides et les brachiopodes (Conway Morris et Caron, 2007). Une relation avec les annélides a été évoquée (Butterfield, 2006), mais elle semble moins probable (Caron et al., 2007).

Nom du descripteur: Conway Morris
Date de la description : 1976
Étymologie :

Odontogriphus – du grec odontos, « dent », et griphos, « énigme », en référence au caractère incertain des affinités de l’organisme.

omalus – du grec homalos, « plat », en référence à la forme aplatie de l’animal.

Spécimens types : Holotype – USNM 196169 conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : aucune.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrière Walcott sur la crête aux Fossiles; couches à tulipes (S7) sur le mont Stephen.

Histoire de la recherche

Bref historique de la recherche :

Le premier spécimen connu, récolté par Walcott entre 1909 et 1924, n’a été étudié que plus de cinquante ans plus tard. Conway Morris a « redécouvert » l’empreinte et la contre-empreinte de ce spécimen dans différentes parties de la collection de Walcott et l’a décrit en 1976 sous le nom d’Odontogriphus omalus. Les affinités phylogénétiques d’Odontogriphus sont demeurées obscures jusqu’à ce que le Musée royal de l’Ontario découvre 189 nouveaux spécimens entre 1990 et 2000, ce qui a permis de réexaminer en profondeur l’animal (Caron et al., 2006).

Description

Morphologie :

Cet animal au corps entièrement mou, ovoïde et comprimé dorso-ventralement, peut atteindre 125 mm de long et 43 mm de large. L’avant et l’arrière du corps sont semi-circulaires et de mêmes dimensions. La bouche, en position ventrale, consiste en une radula à deux rangées de dents primaires. Entre l’arrière de la bouche et l’extrémité postérieure du corps se trouve un pied musculaire entouré de branchies (ou cténidies), sauf à l’avant. La surface dorsale est lisse et dépourvue d’écailles, d’épines ou de plaques. L’intérieur du corps contient un grand estomac, conservé, et un intestin étroit et rectiligne débouchant sur un anus subterminal.

Abondance :

La plupart des spécimens proviennent de la carrière Walcott, où Odontogriphus représente 0,42 % de la faune (Caron et Jackson, 2008). Un spécimen a été trouvé au mont Stephen (site S7).

Taille maximum :
125 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

La présence d’une radula permet de penser qu’Odontogriphus était un brouteur qui utilisait ses dents pour prélever et ingérer sa nourriture. Les ondes locomotrices générées par le grand pied musculaire lui permettaient vraisemblablement de ramper sur les fonds marins. Odontogriphus pourrait avoir brouté les amas en feuillets de la cyanobactérie Morania, car les deux organismes ont souvent été trouvés ensemble dans les mêmes couches fossilifères.

Références

BUTTERFIELD, N. J. 2006. Hooking some stem-group “worms”: fossil lophotrochozoans in the Burgess Shale. BioEssays, 28: 1161-1166.

CARON, J.-B., A. H. SCHELTEMA, C. SCHANDER AND D. RUDKIN. 2006. A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442: 159-163.

CARON, J.-B., A. H. SCHELTEMA, C. SCHANDER AND D. RUDKIN. 2007. Reply to Butterfield on stem-group « worms: » fossil lophotrochozoans in the Burgess Shale. BioEssays, 29: 200-202.

CONWAY MORRIS, S. 1976. A new Cambrian lophophorate from the Burgess Shale of British Columbia. Palaeontology, 19: 199-222.

SIGWART, J. D. AND M. D. SUTTON. 2007. Deep molluscan phylogeny: synthesis of palaeontological and neontological data. Proceedings of the Royal Society B: Biological Sciences, 274: 2413-2419.

Autres liens :

http://www.nature.com/nature/journal/v442/n7099/full/nature04894.html

Odaraia alata

Reconstitution 3D d’Odaraia alata.

MODÈLE 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Odaraia alata
Remarques:

Les affinités d’Odaraia sont incertaines. Bien qu’anciennement considéré comme un crustacé (Walcott, 1912; Briggs, 1981; Briggs et Fortey, 1989; Hou et Bergström, 1997; Wills et al., 1998), des études relativement récentes le placent dans la lignée souche supérieure des arthropodes (Budd, 2002, 2008).

Nom du descripteur: Walcott
Date de la description : 1912
Étymologie :

Odaraia – d’après la montagne Odaray (3 159 m) du parc national du Canada Yoho, nommée par J. J. McArthur en 1887; le nom est dérivé de l’expression assiniboine des Nakoda signifiant « chutes d’eau nombreuses ».

alata – du latin ala, « aile », en référence aux ailerons de la queue de l’animal.

Spécimens types : Lectotype – USNM 57722 (O. alata) conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : aucune.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrières Walcott et Raymond sur la crête aux Fossiles.

Histoire de la recherche

Bref historique de la recherche :

Odaraia a été décrit pour la première fois par Walcott (1912) et a été réexaminé brièvement par Simonetta et Delle Cave (1975). Une révision profonde du genre a été publiée par Briggs (1981); Odaraia a ensuite été mentionné dans plusieurs études sur l’évolution des arthropodes (Briggs et Fortey, 1989; Hou et Bergström, 1997; Wills et al., 1998; Budd, 2002). De nouvelles caractéristiques morphologiques de l’intestin et de la région céphalique ont été décrites indépendamment par Butterfield (2002) et Budd (2008).

Description

Morphologie :

La majeure partie du corps d’Odaraia est enveloppée d’une imposante carapace, dont la ligne cardinale est située le long de la ligne médiane dorsale. Les deux valves sont unies ventralement, ce qui est très particulier. Cette carapace forme un tube ouvert à l’avant et à l’arrière de l’animal. La tête dépasse du tube et comprend une sclérite (petite plaque) antérieure, qui soutient une paire de grands yeux sphériques juchés sur de courts pédoncules. Entre ces deux grands yeux, la tête présente trois petites taches très réfléchissantes, qui pourraient avoir été des yeux médians. Le corps compte plus ou moins 47 segments dotés d’une paire d’appendices. Au niveau des deux premiers segments, les appendices consistent en de minces branches segmentées adaptées à la marche, mais postérieurement, ce sont des appendices biramés. Les appendices biramés se divisent en une branche interne dotée d’une grande épine basale et qui se ramifie en deux branches locomotrices distales et une branche externe porteuse de lamelles filamenteuses. Le telson (queue) est formé de trois ailerons; deux de ces ailerons s’étendent latéralement et le troisième, verticalement. L’intestin, typiquement rectiligne, possède une paire de glandes dans sa partie moyenne.

Abondance :

Odaraia compte pour moins de 0,5 % de la faune de la carrière Walcott, dans laquelle plus de 200 spécimens ont été recueillis (Caron et Jackson, 2008). Une douzaine de spécimens proviennent de la carrière Raymond.

Taille maximum :
150 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

La carapace tubulaire d’Odaraia aurait confiné les appendices ventraux, qu’elle aurait par conséquent rendus inutilisables pour la marche sur le lit marin. Odaraia nageait probablement dans la colonne d’eau par ondulations des branches internes segmentées de ses appendices biramés. Les branches externes filamenteuses auraient servi à la respiration.

La présence de grands yeux et de glandes intestinales suggère que l’animal était un prédateur actif, à la recherche d’organismes en train de nager ou de flotter. Il aurait « filtré » les organismes présents dans le courant d’eau qui entrait à l’avant et ressortait à l’arrière de sa carapace tubulaire. Il a été avancé qu’Odaraia nageait sur le dos, un peu à la manière des limules modernes, afin de réduire la traînée créée au niveau de sa ligne cardinale. Le grand telson aurait servi de stabilisateur, notamment pour éviter le roulis, de gouvernail et de frein lors de la nage.

Références

BRIGGS, D. E. G. 1981. The arthropod Odaraia alata Walcott, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 291: 541-582.

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

BUDD, G. E. 2008. Head structures in upper stem-group euarthropods. Palaeontology, 51: 561-573.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

Autres liens :

Aucun

Nisusia burgessensis

Reconstitution 3D de Nisusia burgessensis avec d’autres brachiopodes (Acrothyra gregaria, Diraphora bellicostata, Micromitra burgessensis, et Paterina zenobia).

MODÈLE 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Kutorginata (Ordre : Kutorginida)
Nom d’espèce: Nisusia burgessensis
Remarques:

Nisusia appartient à la famille des Nisusiidae.

Nom du descripteur: Walcott
Date de la description : 1889
Étymologie :

Nisusia – du latin nisus, « effort ».

burgessensis – d’après le mont Burgess (2 599 m), pic dans le parc national du Canada Yoho. Le mont Burgess a été nommé en 1886 par Otto Klotz, arpenteur topographe du Dominion, en l’honneur d’Alexander Burgess, ancien sous ministre de l’Intérieur.

Spécimens types : Syntypes – USNM 69690-69697 conservés au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis
Autres espèces :

Schistes de Burgess et environs : Nisusia alberta des couches à trilobites du mont Stephen (Walcott, 1905, 1908). Les brachiopodes des schistes de Burgess, en particulier ceux des couches à trilobites du mont Stephen, devraient être réexaminés (voir Bref historique des recherches).

Autres dépôts : plusieurs autres espèces sont connues dans le Cambrien inférieur moyen de l’Amérique du Nord, du Groenland, de la Russie, de la Chine et de l’Australie.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrière Walcott sur la crête aux Fossiles.

Histoire de la recherche

Bref historique de la recherche :

Nisusia burgessensis a été décrit en tant qu’Orthisina alberta (Walcott, 1889) avant d’être renommé Nisusia alberta (Walcott, 1905). Des spécimens de la carrière Walcott (Walcott, 1912) ont été décrits comme des représentants de l’espèce Nisusia burgessensis (Walcott, 1924), combinaison encore utilisée de nos jours. L’espèce, qui n’a pas été étudiée depuis 1924, a besoin d’une révision.

Description

Morphologie :

L’espèce est couverte de fines lignes décoratives (costae) rayonnantes et de stries d’accroissement concentriques. À l’origine, la coquille était minéralisée. Elle est environ 1,5 fois plus large que longue. Ses deux valves sont convexes, mais la convexité de la coquille ventrale est plus prononcée. À l’instar de Diraphora, forme comparable représentée dans les schistes de Burgess, ses coquilles auraient été articulées avec de petites dents courtes. Un spécimen présente des soies (setae) très fines à la marge de la coquille, sur le devant. Elles auraient été fixées à la bordure du manteau le long des valves dorsale et ventrale, comme chez Micromitra.

Abondance :

Nisusia burgessensis est relativement commun dans la carrière Walcott, mais il ne représente qu’une petite fraction (inférieure à 0,3 %) de la faune (Caron et Jackson, 2008).

Taille maximum :
23 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

Nisusia était probablement doté d’un petit pédoncule épais, qui s’attachait au substratum ou à d’autres organismes, tels que l’éponge Pirania, et lui permettait de s’élever au-dessus de l’interface sédiment eau. Le Brachiopode aurait ainsi été protégé de la boue floculée et mouvante qui aurait pu encrasser le lophophore – un appareil filtreur situé entre les coquilles. Les soies (setae) auraient contribué à empêcher l’entrée de particules de boue.

Références

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

WALCOTT, C. 1889. Description of new genera and species of fossils from the Middle Cambrian. United States National Museum, Proceedings for 1888: 441-446.

WALCOTT, C. 1905. Cambrian brachiopods with descriptions of new genera and species. United States National Museum, Proceedings for 1905: 227-337.

WALCOTT, C. 1908. Mount Stephen rocks and fossils. Canadian Alpine Journal, 1: 232-248.

WALCOTT, C. D. 1912. Cambrian Brachiopoda. United States Geological Survey, Monograph, 51: part I, 812 p; part II, 363 p.

WALCOTT, C. D. 1924. Cambrian and Ozarkian Brachiopoda. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Publications, 67: 477-554.

Autres liens :

Aucun

Nectocaris pteryx

Reconstitution 3D de Nectocaris pteryx.

MODÈLE 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Céphalopodes (groupe souche des mollusques)
Nom d’espèce: Nectocaris pteryx
Remarques:

Nectocaris est considéré comme un représentant précoce du groupe souche des mollusques proche des céphalopodes. Ce groupe souche inclut également les genres Vetustovermis, des schistes du Cambrien moyen d’Emu Bay, en Australie, et Petalilium, du dépôt de Chengjiang du Cambrien inférieur, en Chine (Smith et Caron, 2010).

Nom du descripteur: Conway Morris
Date de la description : 1976
Étymologie :

Nectocaris – du grec nekto, « qui nage », et du latin caris, « crevette », en référence au classement original de l’animal parmi les arthropodes.

pteryx – du grec pteryx, « nageoire », en référence aux appareils propulseurs et stabilisateurs de l’organisme.

Spécimens types : Holotype – USNM 198667 conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : aucune.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrières Walcott, Raymond et Collins sur la crête aux Fossiles.

Histoire de la recherche

Bref historique de la recherche :

Comme dans le cas d’Odontogriphus, autre animal des schistes de Burgess apparenté aux mollusques, Walcott a récolté le premier spécimen de Nectocaris entre 1909 et 1924. Il a photographié le fossile, et le cliché est demeuré avec le spécimen non identifié dans les collections de la Smithsonian Institution jusqu’à ce que Simon Conway Morris en note l’existence et décrive le spécimen, en 1976. Comme celui-ci était comprimé latéralement, sa reconstitution était orientée dans le même axe. La trompe (« siphon »), repliée vers l’arrière sous la base de la tête, rappelle le bouclier céphalique d’un arthropode, mais la nageoire, repliée sur le dos, ressemble étrangement à la nageoire dorsale soutenue par des rayons des chordés. Conway Morris n’a fourni aucun diagnostic définitif, mais Simonetta (1988) a considéré l’organisme comme un chordé (Insom et al., 1995), la présence de rayons semblables à des myomères renforçant l’hypothèse d’une affinité avec les chordés.

Entre-temps, Glaessner avait décrit Vetustovermis d’après un spécimen piètrement conservé provenant des schistes d’Emu Bay, en Australie et, au vu de son aspect segmenté, avait proposé une affinité avec les vers annélides (Glaessner, 1979). D’autres chercheurs ont relevé la similarité de certains fossiles du Chengjiang avec ce spécimen et les ont décrits comme des formes ressemblant à des limaces apparentées aux mollusques (Chen et al., 2005). Durant cette période, le Musée royal de l’Ontario a récolté des fossiles similaires. Considérés initialement par Desmond Collins comme des représentants du genre Nectocaris, ces fossiles ont subséquemment été décrits comme des membres du groupe-souche des céphalopodes (Smith et Caron, 2010). Les relations entre les membres de ce clade demeurent nébuleuses, et il faudra peut-être attendre la découverte d’autres fossiles pour déterminer leur diversité et leur répartition. L’absence de coquille chez Nectocaris indique que les céphalopodes – qu’on supposait antérieurement issus plus tard durant le Cambrien de monoplacophores ressemblant à des escargots – ont commencé à nager sans coquille flottante et ont acquis leur coquille indépendamment des autres lignées de mollusques.

Description

Morphologie :

Le corps de Nectocaris a la forme d’un cerf-volant et peut atteindre 72 mm de longueur, incluant les deux tentacules souples dirigées vers l’avant à partir de la tête. La tête est surmontée de deux gros yeux portés sur de courts pédoncules. Sous sa base émerge une longue trompe (« siphon ») qui s’ouvre sur une grande cavité axiale contenant une paire de branchies. La partie principale du corps est bordée de larges nageoires latérales soutenues par des rayons transversaux.

Abondance :

Quatre-ving-dix spécimens de Nectocaris ont été mis au jour sur la crête aux Fossiles, pour la plupart dans la carrière Collins. Le genre est rare ou absent à la plupart des autres sites des schistes de Burgess. Seulement deux spécimens, y compris l’holotype, ont été découverts à la carrière Walcott.

Taille maximum :
72 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

Nectocaris, nageur libre prédateur ou charognard, se nourrissait vraisemblablement de petites proies qu’il capturait à l’aide de ses tentacules préhensiles à la manière des calmars actuels. Il se propulsait principalement avec ses nageoires, mais peut-être aussi en expulsant de l’eau par son « siphon ». Ce siphon servait en outre à oxygéner les grandes branchies internes en faisant transiter de l’eau à travers la cavité corporelle.

Références

CHEN, J.-Y., D.-Y. HUANG AND D. J. BOTTJER. 2005. An Early Cambrian problematic fossil: Vetustovermis and its possible affinities. Proceedings of the Royal Society B: Biological Sciences, 272(1576): 2003-2007.

CONWAY MORRIS, S. 1976. Nectocaris pteryx, a new organism from the Middle Cambrian Burgess Shale of British Columbia. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 12: 703-713.

GLAESSNER, M. F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa, 3(1): 21-31.

INSOM, E. A. PUCCI AND A. M. SIMONETTA. 1995. Cambrian Protochordata, their origin and significance. Bollettino di Zoologia, 62(3): 243-252.

SIMONETTA, A. M. 1988. Is Nectocaris pteryx a chordate? Bollettino di Zoologia, 55(1-2): 63-68.

SMITH, M. AND J.-B. CARON. 2010. Primitive soft-bodied cephalopods from the Cambrian. Nature, 465: 469-472.

Autres liens :

http://www.nature.com/nature/journal/v465/n7297/full/nature09068.html

Sidneyia inexpectans

Reconstitution 3D de Sidneyia inexpectans.

RECONSTITUTION 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Sidneyia inexpectans
Remarques:

Sidneyia est habituellement considéré comme un taxon étroitement apparenté aux chélicérates, mais sa position exacte par rapport au groupe est nébuleuse (Budd et Telford, 2009). Il occupe en effet la place de groupe frère (Hou et Bergström, 1997), de taxon proche de la couronne dans la lignée souche (Bruton, 1981; Edgecombe et Ramsköld, 1999; Hendricks et Lieberman, 2008) ou de taxon basal dans la lignée souche (Briggs et Fortey, 1989; Wills et al., 1998; Cotton et Braddy, 2004) des chélicérates.

Nom du descripteur: Walcott
Date de la description : 1911
Étymologie :

Sidneyia – d’après Sidney le prénom du fils de Walcott, qui découvrit le premier spécimen en août 1910.

inexpectans – du latin inexpectans, « inattendu », car Walcott ne s’attendait pas à trouver un tel fossile dans une strate plus ancienne que l’Ordovicien.

Spécimens types : Lectotype – USNM 57487 (S. inexpectans) conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : Un unique spécimen de la faune de Chengjiang en Chine a été utilisé pour décrire une deuxième espèce, Sidneyia sinica (Zhang et al., 2002), qui a ensuite été retirée du genre (Briggs et al., 2008).

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (505 millions d’années environ).
Sites principaux :

Schistes de Burgess et environs : carrières Walcott, Raymond et Collins sur la crête aux Fossiles, le mont Field, le mont Stephen – couches à tulipes (S7) et autres sites moins importants – le mont Odaray et le glacier Stanley.

Autres dépôts : Sidneyia a été décrit d’après des spécimens de la formation de Wheeler (Briggs et Robison, 1984), des schistes de Spence dans l’Utah (Briggs et al. 2008) et de la formation Kinzers en Pennsylvanie (Resser et Howell, 1938).

Histoire de la recherche

Bref historique de la recherche :

Sidneyia est le premier fossile des schistes de Burgess décrit par Walcott (1911). Des détails ont été ajoutés à la description par Walcott l’année suivante (Walcott, 1912); Strømer (1944) et Simonetta (1963) ont apporté des révisions mineures à la reconstitution de Walcott. Un grand appendice isolé a été initialement décrit comme un appendice frontal de Sidneyia (Walcott, 1911), mais il s’est avéré plus tard qu’il appartenait à l’anomalocaride Laggania (Whittington et Briggs, 1985).Les espèces ont été décrites à nouveau à partir des centaines de spécimens disponibles dans le cadre d’une importante étude menée par Bruton (1981).

Description

Morphologie :

Sidneyia présente un bouclier céphalique convexe, court, large et subrectangulaire en vue frontale. Les deux coins latéraux du bouclier son entaillés pour permettre le passage d’une antenne et d’un pédoncule oculaire. Mise à part la paire d’antennes longues et minces, qui compte au moins 20 articles, la tête ne porte pas d’appendices. Des yeux hémisphériques, très réfléchissants, saillent au-dessus et en arrière des antennes.

Le thorax de Sidneyia compte neuf segments corporels minces, qui s’élargissent du premier au quatrième segment, puis s’amincissent progressivement jusqu’au telson. Les quatre premiers segments thoraciques accueillent des appendices dotés d’un important article basal (coxa) et de huit articles plus légers se terminant en pince acérée. Les cinq segments thoraciques suivants portent des appendices similaires, mais les membres y sont associés à des rameaux de filaments formant une sorte d’aile.

L’abdomen consiste en trois segments beaucoup plus fins que ceux du thorax et se termine en un telson triangulaire. Le dernier segment abdominal possède une paire de larges palettes qui s’articulent avec le telson pour constituer un éventail caudal. Une trace d’intestin droit est observable chez certains spécimens; l’organe s’étend de la bouche (antérieure) à l’anus (au niveau du telson) et contient parfois des trilobites, qui ont été conservés.

Abondance :

Sidneyia est un arthropode relativement commun dans la carrière Walcott, où il représente 0,3 % des spécimens recensés (Caron et Jackson, 2008). Des centaines de spécimens ont été recueillis dans la carrière Walcott (Bruton, 1981) et d’autres sites des environs.

Taille maximum :
160 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

Sidneyia nageait et marchait sur le plancher sous-marin. Ses quatre paires antérieures d’appendices thoraciques lui auraient servi à se déplacer et ses coxae basales épineuses, à broyer les aliments et à les acheminer d’arrière en avant jusqu’à la bouche. En ondulant, les rameaux de filaments de ses cinq paires postérieures d’appendices thoraciques lui auraient permis de se propulser dans la colonne d’eau. Ces filaments auraient en outre participé à la respiration en jouant le rôle de branchies.

La nature prédatrice de Sidneyia est révélée par ses coxas épineuses, qui lui permettaient de mastiquer la nourriture, et la présence de morceaux de petits animaux fossilisés dans son intestin. Sidneyia se serait déplacé au-dessus du plancher sous-marin en utilisant ses yeux et ses antennes pour rechercher des proies, qu’il aurait saisies et écrasées avec ses appendices antérieurs.

Références

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BRIGGS, D. E. G. AND R. A. ROBISON. 1984. Exceptionally preserved non-trilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, 111: 1-24.

BRIGGS, D. E. G., B. S. LIEBERMAN, J. R. HENDRICKS, S. L. HALGEDAHL AND R. D. JARRARD. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82(2): 238-254.

BRUTON, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 295: 619-653.

BUDD, G. E. AND M. J. TELFORD. 2009. The origin and evolution of arthropods. Nature, 457(7231): 812-817.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., R. GAINES, G. MANGANO, M. STRENG, AND A. DALEY. 2010. A new Burgess Shale-type assemblage from the « thin » Stephen Formation of the Southern Canadian Rockies. Geology, 38: 811-814.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

EDGECOMBE, G. D. AND L. RAMSKÖLD. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Jounral of Paleontology, 73: 263-287.

HENDRICKS , J. R. AND B. S. LIEBERMAN. 2008. Phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. Journal of Paleontology, 82: 585-594.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

RASSER, C. E. AND B. F. HOWELL. 1938. Lower Cambrian Olenellus zone of the Appalachians. Bulletin of the Geological Society of America, 49: 195-248.

SIMONETTA, A. M. 1963. Osservazioni sugli artropodi non trilobiti della Burgess Shale (Cambriano medio). II. Contributo: I Generai Sidneyia ed Amiella Walcott 1911. Monitore Zoologico Italiano, 70: 97-108.

STØMER, L. 1944. On the relationships and phylogeny of fossil and recent Arachnomorpha. Norsk Videnskaps-Akademi Skrifter I. Matematisk-Naturvidenskaplig Klasse, 5: 1-158.

WALCOTT, C. D. 1911. Middle Cambrian Merostomata. Cambrian geology and paleontology II. Smithsonian Miscellaneous Collections, 57: 17-40.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WHITTINGTON, H. B. AND D. E. G. BRIGGS. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British-Columbia. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 309: 569-609.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, pp. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

ZHU, X., H. JIAN AND S. DEGAN. 2002. New occurrence of the Burgess Shale arthropod Sidneyia in the Early Cambrian Chengjiang Lagerstätte (South China), and revision of the arthropod Urokodia. Alcheringa: An Australasian Journal of Palaeontology, 26: 1-18.

Autres liens :

Selkirkia columbia

Reconstitution 3D de Selkirkia columbia.

RECONSTITUTION 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des priapuliens)
Nom d’espèce: Selkirkia columbia
Remarques:

Selkirkia a été comparé aux némathelminthes (Maas et al., 2007), mais la plupart des analyses appuient l’hypothèse d’un lien avec les priapuliens au niveau du groupe souche (Harvey et al., 2010; Wills, 1998).

Nom du descripteur: Walcott
Date de la description : 1911
Étymologie :

Selkirkia – du nom de la chaîne de Selkirk, dans le sud-est de la Colombie-Britannique.

columbia – de la Colombie-Britannique, où se trouvent les schistes de Burgess.

Spécimens types : Holotype – USNM 57624 conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : Le genre Selkirkia, dont l’âge va du Cambrien inférieur au Cambrien moyen, est représenté par plusieurs espèces: S. sinica, du biote de Chengjiang du Cambrien inférieur (Luo et al., 1999; Maas et al., 2007), S. pennsylvanica, de la Formation de Kinzers du Cambrien inférieur (Resser et Howell, 1938), Selkirkia sp. cf. S. columbia et S. spencei, des schistes de Spence du Cambrien moyen, en Utah (Resser, 1939; Conway Morris et Robison, 1986, 1988), et S. willoughbyi, de la Formation de Marjum du Cambrien moyen, en Utah (Conway Morris et Robison, 1986).

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Schistes de Burgess et environs : carrières Walcott, Raymond et Collins sur la crête aux Fossiles; sites moins importants sur les monts Field et Odaray; couches à trilobites, carrière Collins, couches à tulipes (S7) et sites moins importants sur le mont Stephen.

Autres dépôts : schistes de Spence du Cambrien moyen, dans l’Utah (Resser, 1939; Conway Morris et Robison, 1986, 1988).

Histoire de la recherche

Bref historique de la recherche :

Charles Walcott (1908) a illustré un spécimen unique d’un tube simple qu’il a appelé « Orthotheca major ». Il a interprété le fossile comme le tube d’un ver polychète, avec une autre espèce célèbre, « O. corrugata », décrite par Matthew dix ans auparavant. Or O. corrugata, aujourd’hui appelé Wiwaxia corrugata, n’est pas le tube d’un ver mais plutôt l’écaille d’un mollusque à coquille dure! Le spécimen original d’« O. major » provenait des couches à trilobites sur le mont Stephen, mais il a fallu attendre la découverte de spécimens entiers de vers à corps mou dans leur tube sur la crête aux Fossiles pour en savoir plus sur cet animal. Walcott (1911) a nommé le genre Selkirkia pour y ranger les nouveaux matériaux fossiles. En plus de l’espèce type, S. major, il a nommé deux nouvelles espèces: S. gracilis et S. fragilis. Dans le cadre d’une révision des collections de Walcott et d’autres fossiles découverts par la Commission géologique du Canada, Conway Morris (1977) a synonymisé les trois espèces de Walcott avec une seule espèce qu’il a appelée S. columbia, nom encore en usage. Il a décrit S. columbia comme un ver priapulien primitif (Conway Morris, 1977), mais des études ultérieures ont révélé que l’espèce fait partie du groupe-souche des priapuliens (Wills, 1998; Harvey et al., 2010).

Description

Morphologie :

Selkirkia vivait dans un tube et pouvait atteindre 6 cm de longueur. Le corps du ver est semblable à celui de la plupart des priapuliens et comprend un tronc (maintenu à demeure dans le tube) et une pièce buccale antérieure qui pouvait s’éverser dans le tronc appelée proboscide. Le proboscide porte différentes séries d’épines longitudinales et présente une symétrie radiale. Les petits appendices appelés papilles présents le long de la partie antérieure du tronc avaient probablement pour fonction d’ancrer le ver à son tube. L’intestin est rectiligne, et l’anus, terminal. Le tube, non minéralisé, est de forme légèrement conique, ouvert aux deux extrémités et marqué de fines stries transversales.

Abondance :

Selkirkia est le plus abondant ver priapulien de la carrière Walcott, où il représente 2,7 % de la faune répertoriée (Caron et Jackson, 2008). Des milliers de spécimens, pour la plupart des tubes isolés, ont été découverts à ce jour.

Taille maximum :
60 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

La présence d’un proboscide bien développé et de fortes épines atteste un mode de vie carnivore. Des comparaisons avec des vers priapuliens tubicoles modernes donnent à croire que Selkirkia avait une mobilité limitée et passait le plus clair de son temps enfoui verticalement ou à angle à l’interface eau-sédiments, y capturant peut-être ses proies « au piège ». Les tubes vides étaient souvent colonisés par d’autres organismes tels que des brachiopodes, des éponges et des échinodermes primitifs (voir Echmatocrinus).

Références

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology, 20: 1-95.

CONWAY MORRIS, S. AND R. A. ROBISON. 1986. Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain. The University of Kansas paleontological contributions, 117: 1-22.

CONWAY MORRIS, S. AND R. A. ROBISON. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. University of Kansas Paleontological Contributions, Paper, 122: 23-48.

HARVEY, T. H. P., X. DONG AND P. C. J. DONOGHUE. 2010. Are palaeoscolecids ancestral ecdysozoans? Evolution & Development, 12(2): 177-200.

LUO, H., S. HU, L. CHEN, S. ZHANG AND Y. TAO. 1999. Early Cambrian Chengjiang fauna from Kunming region, China. Yunnan Science and Technology Press, Kunming, 162 p.

MAAS, A., D. HUANG, J. CHEN, D. WALOSZEK AND A. BRAUN. 2007. Maotianshan-Shale nemathelminths – Morphology, biology, and the phylogeny of Nemathelminthes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 288-306.

RESSER, C. E. AND B. F. HOWELL. 1938. Lower Cambrian Olenellus Zone of the Appalachians. Geological Society of America, Bulletin, 49: 195-248.

RESSER, C. E. 1939. The Spence Shale and its fauna. Smithsonian Miscellaneous Collections, 97(12):1-29.

WALCOTT, C. 1908. Mount Stephen rocks and fossils. Canadian Alpine Journal, 1: 232-248.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

WILLS, M. A. 1998. Cambrian and Recent disparity: the picture from priapulids. Paleobiology, 24(2): 177-199.

Autres liens :

Aucun

Scenella amii

Reconstitution 3D de Scenella amii.

RECONSTITUTION 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des mollusques)
Nom d’espèce: Scenella amii
Remarques:

Scenella est généralement considéré comme un monoplacophore (Knight, 1952; Runnegar et Jell, 1976). Le genre a également été décrit comme antérieur aux brachiopodes (Dzik, 2010) ou associé aux cnidaires (Babcock et Robison, 1988; Yochelson et Gil Cid, 1984).

Nom du descripteur: Matthew
Date de la description : 1902
Étymologie :

Scenella – du grec skene, « tente » ou « abri », en référence à la forme de l’animal.

amii – d’après Marc-Henri Ami, de la Commission géologique du Canada.

Spécimens types : Holotype – ROM 8048 conservé au Musée royal de l’Ontario, Toronto, Canada.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : des douzaines d’espèces datant du Cambrien inférieur à l’Ordovicien inférieur ont été décrites.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (505 millions d’années).
Sites principaux :

Carrières Walcott et Raymond sur la crête aux Fossiles; couches à trilobites et sites moins importants sur le mont Stephen.

Histoire de la recherche

Bref historique de la recherche :

En raison de sa ressemblance avec une patelle, Scenella a été classé à l’origine parmi les mollusques, d’abord comme un ptéropode puis comme un gastéropode (Walcott, 1886). Les premiers fossiles du genre provenant des schistes de Burgess ont été récoltés dans les couches à trilobites sur le mont Stephen, et décrits par Matthew (1902) comme appartenant à Metoptoma amii. Walcott (1908) a rangé d’autres spécimens provenant du même site (ainsi que de la carrière Walcott) dans une espèce déjà établie, Scenella varians. Resser (1938) a conclu que tous ces spécimens appartenaient à une seule et même espèce et proposé une nouvelle combinaison, Scenella amii. Dans le même article, il a nommé une seconde espèce des couches à trilobites, S. columbiana, à partir d’un spécimen unique possiblement hérissé d’épines et reconnu à l’origine comme un brachiopode (Walcott, 1912), ce qui demeure très douteux.

Description

Morphologie :

Chaque fossile conique a la forme d’un disque plat à sommet central. Ce disque, ci-après appelé « coquille », est parfois ridé, et son sommet est entouré d’anneaux concentriques. La coquille est également allongée dans un sens et, de ce fait, apparaît plus elliptique que circulaire.

Les fossiles sont souvent conservés en groupes denses, la pointe dressée vers le haut. Aucun tissu mou n’a jamais été observé en association avec le genre Scenella. Les coquilles présentent des signes évidents de minéralisation, car elles ont conservé leur caractère tridimensionnel et présentent de petites fissures témoignant de leur fragilité.

Abondance :

Des centaines de spécimens de S. amii ont été découverts dans la carrière Walcott, où ils constituent 2,27 % de la faune (Caron et Jackson, 2008). Un certain nombre de dalles comportent de nombreux spécimens préservés en groupes serrées.

Taille maximum :
10 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

S’il s’agit effectivement d’un mollusque, Scenella était probablement un organisme brouteur rampant sur le fond marin.

Références

BABCOCK, L. E. AND R. A. ROBISON. 1988. Taxonomy and paleobiology of some Middle Cambrian Scenella (Cnidaria) and hyolithids (Mollusca) from western North America. University of Kansas Paleontological Contributions, Paper, 121: 1-22.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

DZIK, J. 2010. Brachiopod identity of the alleged monoplacophoran ancestors of cephalopods. Malacologia, 52:97-113.

KNIGHT, J. B. 1952. Primitive fossil gastropods and their bearing on gastropod evolution. Smithsonian Miscellaneous Collections, 117(13): 1–56.

MATTHEW, G. F. 1902. Notes on Cambrian Faunas: Cambrian Brachiopoda and Mollusca of Mt. Stephen, B.C. with the description of a new species of Metoptoma. Transactions of the Royal Society of Canada, 4:107-112.

RASETTI, F. 1954. Internal shell structures in the Middle Cambrian gastropod Scenella and the problematic genus Stenothecoides. Journal of Paleontology, 28: 59-66.

RESSER, C. E. 1938. Fourth contribution to nomenclature of Cambrian fossils. Smithsonian Miscellaneous Collections, 97:1-43.

Runnegar, B. AND P. A. JELL. 1976. Australian Middle Cambrian molluscs and their bearing on early molluscan evolution. Alcheringa: An Australasian Journal of Palaeontology, 1(2): 109-138.

WALCOTT, C. D. 1886. Second contribution to the studies on the Cambrian faunas of North America. Bulletin of the United States Geological Survey, (30): 11-356.

WALCOTT, C. 1908. Mount Stephen rocks and fossils. Canadian Alpine Journal, 1: 232-248.

WALCOTT, C. 1912. Cambrian Brachiopoda. United States Geological Survey Monograph, 51: Part 1: 1-872, Part 872: 871-363.

YOCHELSON, E. L. AND D. GIL CID. 1984. Reevaluation of the systematic position of Scenella. Lethaia, 17: 331-340.

Autres liens :

Aucun

Pirania muricata

Reconstitution 3D de Pirania muricata avec d’autres éponges (Choia ridleyi, Diagoniella cyathiformis, Eiffelia globosa, Hazelia conferta, Vauxia bellula, et Wapkia elongata) et Chancelloria eros, un animal couvert d’épines disposées en étoile qui ressemble à une éponge.

RECONSTITUTION 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Démosponges (Ordre : Monaxonides)
Nom d’espèce: Pirania muricata
Remarques:

Pirania est considéré comme un démosponge primitif (Rigby, 1986). Les démosponges, qui comprennent les éponges de toilette, forment aujourd’hui classe d’éponges la plus importante.

Nom du descripteur: Walcott
Date de la description : 1920
Étymologie :

Pirania – d’après le mont Saint-Piran (2 649 m), dans la vallée de la rivière Bow, parc national du Canada Banff, en Alberta, nommé par Samuel Allen en 1894 en l’honneur du saint patron de Cornouailles.

muricata – du latin muricatus, « hérissé de pointes », en référence aux gros spicules pointus qui hérissent la paroi de l’éponge.

Spécimens types : Lectotype – USNM 66495 (désigné à tort par le numéro 66496 dans Rigby, 1986) conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune

Autres dépôts : Pirania auraeum Botting, 2007 de l’Ordovicien inférieur du Maroc (Botting, 2007); Pirania llanfawrensis Botting, 2004 de l’Ordovicien supérieur d’Angleterre (Botting, 2004).

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrière Walcott sur la crête aux Fossiles; couches à trilobites et couches à tulipes (S7) sur le mont Stephen; plusieurs sites moins importants sur les monts Field, Stephen et Odaray.

Histoire de la recherche

Bref historique de la recherche :

Pirania a été décrit pour la première fois par Walcott (1920). Rigby (1986) en a fait une nouvelle description et conclu que le squelette est constitué de canaux répartis selon une configuration hexagonale, de gros spicules pointus et de touffes de petits spicules. Rigby et Collins ont également examiné cette éponge à partir de nouveaux fossiles récoltés par le Musée royal de l’Ontario (2004).

Description

Morphologie :

Pirania est une éponge cylindrique à paroi épaisse qui peut compter jusqu’à quatre branches. Le squelette est constitué de touffes de petits spicules et de longs spicules pointus très distinctifs émergeant de la paroi externe. Celle-ci est percée de longs canaux y assurant le passage de l’eau. Les branches naissent près de la base de l’organisme.

Abondance :

Pirania est commun dans la plupart des sites de Burgess, mais il ne représente que 0,38 % de la faune de la carrière Walcott (Caron et Jackson, 2008).

Taille maximum :
30 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

Pirania vivait fixé au fond marin et filtrait les particules de matière organique en suspension dans l’eau par les canaux de sa paroi. Des brachiopodes Nisusia et Micromitra, diverses autres éponges et même des Chancelloriidés juvéniles ont souvent été trouvés fixés aux longs spicules de Pirania. Cette stratégie permettait probablement à ces organismes d’éviter la forte turbidité présente près du fond.

Références

BOTTING, J. P. 2004. An exceptional Caradoc sponge fauna from the Llanfawr Quarries, Central Wales and phylogenetic implications. Journal of Systematic Paleontology, 2: 31-63.

BOTTING, J. P. 2007. ‘Cambrian’ demosponges in the Ordovician of Morocco: insights into the early evolutionary history of sponges. Geobios, 40: 737-748.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

RIGBY, J. K. 1986. Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica canadiana, 2: 105 p.

RIGBY, J. K. AND D. COLLINS. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science (1): 155 p.

WALCOTT, C. D. 1920. Middle Cambrian Spongiae. Cambrian Geology and Paleontology IV. Smithsonian Miscellaneous Collections, 67(6): 261-365.

Autres liens :

Pikaia gracilens

Reconstitution 3D de Pikaia gracilens.

RECONSTITUTION 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Modèle animé 3D
Embranchement: Modèle animé 3D
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des chordés)
Nom d’espèce: Pikaia gracilens
Remarques:

Pikaia est considéré comme un membre primitif du groupe souche des chordés (Conway Morris et Caron, 2012).

Nom du descripteur: Walcott
Date de la description : 1911
Étymologie :

Pikaia – d’après le pika, un petit mammifère alpin cousin du lapin, qui vit dans les Rocheuses, entre autres près des schistes de Burgess.

gracilens – du latin gracilis « mince et délicat », en référence à la forme du corps de l’animal.

Spécimens types : Lectotype – USNM 57628 conservés au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États Unis.
Autres espèces :

Schistes de Burgess et environs : Pikaia cf. gracilens de la carrière Collins sur la crête aux Fossiles (Conway Morris et Caron, 2012).

Autres dépôts : aucune.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrières Walcott et Raymond sur la crête aux Fossiles.

Histoire de la recherche

Bref historique de la recherche :

Pikaia a été décrit pour la première fois par Walcott, à partir de quelques spécimens, dans une monographie consacrée à différents vers de Burgess publiée en 1911. Deux autres spécimens ont été présentés dans une publication posthume (Walcott, 1931). Walcott a classé Pikaia parmi les vers gephyrés, groupe maintenant éteint, avec d’autres fossiles vermiformes tels Banffia, Ottoia et Oesia. Ultérieurement, Pikaia a été considéré comme un chordé primitif (Conway Morris, 1979; Conway Morris et al., 1982). Cette interprétation a été adoptée jusqu’à un certain point dans la plupart des études sur l’évolution des chordés primitifs (p. ex. Janvier, 1998). Pikaia a également été identifié comme un membre du groupe souche des chordés (Smith et al., 2001) ou un céphalochordé (Shu et al., 1999). En outre, il occupe une place importante dans les interprétations des fossiles de Burgess que proposa Gould dans son livre intitulé La vie est belle (Gould, 1989; voir aussi Briggs et Fortey, 2005). Une nouvelle description de l’animal fondée sur 114 spécimens appuie la thèse selon laquelle Pikaia constitue un membre primitif du groupe souche des chordés (Conway Morris et Caron, 2012).

Description

Morphologie :

Le corps, aplati latéralement, mesure en moyenne 40 mm de long et 4,5 mm de haut. On remarque des traces d’une quille ventrale et d’une mince nageoire dorsale. Une surface ventrale postérieure portant de légères structures segmentaires représenterait peut-être une nageoire dorsale ou une partie molle protégeant les structures gonadiques. La tête est minuscule (environ 1,5 % de la longueur du corps) et porte deux lobes d’égale grosseur et une paire appendices, courts et minces, ressemblant à des tentacules. Elle ne montre cependant aucune trace d’yeux. Juste derrière la tête, la surface ventrale est ponctuée de part et d’autre de l’axe médian d’une série de paires (jusqu’à neuf) d’appendices dotés à la base de ce qui pourrait être des fentes pharyngiennes. La fonction de ces appendices reste à déterminer, mais il semblerait qu’ils aient eu une fonction respiratoire. La bouche est située sous la tête et se prolonge en une grande cavité pharyngienne souvent conservée en relief. Le tube digestif est absent, mais l’anus était probablement terminal. Une unité dorsale antérieure représentant une structure dorsale semi-rigide juste derrière la tête occupe un cinquième de la longueur totale de l’organisme. Le corps est doté d’une centaine de myomères ou bandes musculaires. Une structure dorsale communément appelée organe dorsal, initialement identifiée comme une notochorde (Conway Morris, 1979), court sur toute la longueur du corps de l’organisme. La notochorde et la chaîne nerveuse sont ventrales par rapport à l’organe dorsal. Des sections du système vasculaire ont également été préservées, y compris des vaisseaux sanguins en position ventrale.

Abondance :

Pikaia est relativement rare. Il en existe 114 spécimens (la collection du ROM, qui en compte 60, est la plus importante), la plupart de la carrière Walcott (Conway Morris et Caron, 2012). Pikaia représente 0,03 % de la faune de la carrière Walcott (Caron et Jackson, 2008).

Taille maximum :
60 mm

Écologie

Mode de vie : Modèle animé 3D
Mode d'alimentation : Modèle animé 3D
Interprétations écologiques :

Avec une allure d’anguille et des muscles développés Pikaia donnent à penser que cet organisme nageait librement, même s’il passait probablement une partie de son temps sur le fond marin. Les tentacules avaient peut-être une fonction sensorielle. La présence de boue dans le pharynx laisse supposer que Pikaia se nourrissait de particules en suspension ou encore de sédiments.

Références

BRIGGS, D. E. G. AND R. A. FORTEY. 2005. Wonderful strife: Systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology, 31(SUPPL.2 ): 94-112.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

CONWAY MORRIS, S. & CARON, J.-B. 2012. Pikaia gracilens Walcott, a stem-group chordate from the Middle Cambrian of British Columbia. Biological Reviews Article first published online: 4 MAR 2012. DOI: 10.1111/j.1469-185X.2012.00220.x.

CONWAY MORRIS, S., H. B. WHITTINGTON, D. E. G. BRIGGS, C. P. HUGHES AND D. L. BRUTON. 1982. Atlas of the Burgess Shale. Palaeontological Association, 31 p. + 23 pl.

GOULD, S. J. 1989. Wonderful Life. The Burgess Shale and the Nature of History. Norton, New York, 347 p.

JANVIER, P. 1998. Les vertébrés avant le Silurien. GeoBios, 30: 931-950.

SHU, D.-G,. H. L. LUO, S. CONWAY MORRIS, X. L. ZHANG, S. X. HU, L. CHEN, J. HAN, M. ZHU, Y. LI AND L. Z. CHEN. 1999. Lower Cambrian vertebrates from south China. Nature, 402 (4 November 1999): 42-46.

SMITH, M. P., I. J. SANSOM AND K. D. COCHRANE. 2001. The Cambrian origin of vertebrates, p. 67-84. In P. E. Ahlberg (ed.), Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, Genetics and Development. Taylor and Francis, London.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

WALCOTT, C. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85(3): 1-46.

Autres liens :