Les schistes de Burgess

Balhuticaris voltae

Balhuticaris voltae, holotype ROMIP 66238

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Higher Taxonomic Assignment: Hymenocarines, Famille : Odaraiidae
Nom d’espèce: Balhuticaris voltae
Remarques:

Les hyménocarines étaient des arthropodes ancestraux dotés de carapaces bivalves et de mandibules, formant l’essentiel des premiers mandibulés (représentés aujourd’hui par les myriapodes, les crustacés et les insectes) (Aria et Caron, 2017 ; Vannier et al., 2018). Chez de nombreux hyménocarines, dont Balhuticaris, il reste difficile de déterminer le nombre exact et les types d’appendices de la tête, ce qui rend difficile une compréhension détaillée des rapports évolutifs à l’intérieur de ce groupe. Balhuticaris appartient très probablement à la famille des Odaraiidae, un groupe d’hyménocarines au corps fortement multisegmenté, aux antennes réduites ou absentes et aux pattes fortement multisegmentées.

Nom du descripteur: Izquierdo-López & Caron
Date de la description : 2022
Étymologie :

Balhuticaris – inspiré de la créature mythologique « Balhut », animal aquatique géant décrit dans certaines cosmologies perses, et du latin caris, qui signifie « crabe » ou « crevette »

voltae – du catalan a volta, qui signifie « voûté ».

Spécimens types : Holotype ROMIP66238
Autres espèces :

Schistes de Burgess et environs : aucune
Autres dépôts : aucune

Âge et Sites

Age :
Cambrien moyen, étage Wuliuen, portion supérieure de la formation des schistes de Burgess (environ 505 millions d’années)
Sites principaux :

Marble Canyon, Tokumm Creek

Histoire de la recherche

Bref historique de la recherche :

Balhuticaris a été trouvé parmi les fossiles des sites de Marble Canyon et de Tokumm Creek au cours de plusieurs expéditions ayant eu lieu entre 2012 et 2022. À l’origine, les différents spécimens n’avaient pas été attribués au même organisme mais à des euarthropodes non identifiés ou peut-être à des radiodontes (Nanglu et al., 2020). Balhuticaris fut formellement décrit en 2022 (Izquierdo-López et Caron, 2022).

Description

Morphologie :

Balhuticaris est un grand arthropode bivalve qui peut atteindre 25 cm de longueur. La carapace, en forme de dôme, ne couvre que le premier quart de la longueur totale du corps. En vue frontale, elle ressemble à une voûte : chaque valve s’étend vers la face ventrale de l’animal, dépassant la longueur des pattes. La face dorsale s’étend vers l’extrémité postérieure, donnant aux valves en vue latérale une forme de « haricot ». La tête porte une paire d’yeux bien développés, pédonculés et « bilobés ». Elle porte également une paire d’antennes courtes et une structure qui pourrait représenter un sclérite de la tête. Le corps est fortement multisegmenté, comptant environ 110 segments postérieurs à la tête. Les quelque dix premiers segments sont plus longs, et portent des pattes dont la taille se réduit en direction de la tête. Tous les segments portent une paire de pattes, chacune subdivisée en deux branches, ou rames (càd biramée) : une rame locomotrice (endopode) et une rame natatoire et respiratoire, en forme de pagaie (exopode). L’endopode est fin et semble se subdiviser en 14 segments. L’exopode est ovoïde, et presque aussi long que l’endopode. Le dernier segment est plus long que les autres et de forme triangulaire aplatie. Il porte deux projections en forme de pagaie (rames caudales), subdivisées en trois segments. Ces projections sont ornementées de trois épines sur leur bord externe et des filaments allongés (setae) sur leur bord postérieur.

Abondance :

Balhuticaris est rare. Seule une douzaine de spécimens provenant des sites de Marble Canyon et de Tokumm Creek est connue.

Taille maximum :
Environ 25 cm.

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

Balhuticaris est le plus grand des arthropodes bivalves cambriens connus à ce jour. Il dépasse en longueur Tuzoia (Vannier et al., 2007) et Nereocaris exilis (Legg et al., 2012), et rivalise avec d’autres arthropodes des schistes de Burgess, comme les radiodontes, y compris le plus grand spécimen complet d’Anomalocaris (Briggs, 1975) et Cambroraster (Moysiuk et Caron, 2019). Il demeure cependant plus petit que Titanokorys, dont la longueur est estimée à 50 cm (Caron et Moysiuk, 2021). L’anatomie générale de Balhuticaris, notamment son corps allongé et ses grandes rames caudales segmentées, porte à croire qu’il était probablement un bon nageur. L’hypothèse a été émise qu’il pouvait nager sur le dos (Izquierdo-López et Caron, 2022), comme l’apparenté Fibulacaris et, peut-être Odaraia (Briggs, 1981 ; Izquierdo-López et Caron, 2019). Bien que dépourvu d’appendices prédateurs préhensiles, Balhuticaris, en raison de sa grande taille, pourrait avoir eu une alimentation variant de filtreur à prédateur (Izquierdo-López et Caron, 2022), à l’image de certains des plus grands anostracés actuels (Fryer, 1966).

Références

  • ARIA, C. and CARON, J. B. 2017. Burgess Shale fossils illustrate the origin of the mandibulate body plan. Nature, 545: 89–92.
  • BRIGGS, D. E. G. 1975. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22: 631–664.
  • BRIGGS, D. E. G. 1981. The arthropod Odaraia alata Walcott, middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 291: 541–582.
  • CARON, J.-B. and MOYSIUK, J. 2021. A giant nektobenthic radiodont from the Burgess Shale and the significance of hurdiid carapace diversity. Royal Society Open Science, 8: 210664.
  • FRYER, G. 1966. Branchinecta gigas Lynch, a non‐filter‐feeding raptatory anostracan, with notes on the feeding habits of certain other anostracans. Proceedings of the Linnean Society of London, 177: 19–34.
  • IZQUIERDO-LÓPEZ, A. and CARON, J. B. 2019. A possible case of inverted lifestyle in a new bivalved arthropod from the Burgess Shale. Royal Society Open Science, 6: 191350:
  • IZQUIERDO-LÓPEZ, A. and CARON, J. B. 2021. A Burgess Shale mandibulate arthropod with a pygidium: a case of convergent evolution. Papers in Palaeontology, 7: 1877–1894.
  • IZQUIERDO-LÓPEZ, A. and CARON, J. B. 2022. Extreme multisegmentation in a giant bivalved arthropod from the Cambrian Burgess Shale. IScience, 25, 104675.
  • LEGG, D. A., SUTTON, M. D., EDGECOMBE, G. D. and CARON, J. B. 2012. Cambrian bivalved arthropod reveals origin of arthrodization. Proceedings of the Royal Society B: Biological Sciences, 279: 4699–4704.
  • MOYSIUK, J. and CARON, J.-B. 2019. A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources. Proceedings of the Royal Society B: Biological Sciences, 286:201910.
  • NANGLU, K., CARON, J. and GAINES, R. 2020. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology, 46(1): 58–81.
  • VANNIER, J., ARIA, C., TAYLOR, R. S. and CARON, J. B. 2018. Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. Royal Society Open Science, 5:172206.
  • VANNIER, J. CARON, J. B., YUAN, J., BRIGGS, D. E. G., COLLINS, D., ZHAO, Y. and ZHU, M. 2007. Tuzoia: morphology and lifestyle of a large bivalved arthropod of the Cambrian seas. Journal of Paleontology, 81(3): 445–471.
Autres liens :

Zacanthoides romingeri

Zacanthoides romingeri (figure 3) illustré par Rominger (1887) sous le nom d’Embolimus spinosa.

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Trilobites (Ordre : Corynexochida)
Nom d’espèce: Zacanthoides romingeri
Remarques:

Les trilobites sont des euarthropodes éteints, probablement des représentants de la lignée souche des mandibulés, qui regroupent les crustacés, les myriapodes et les hexapodes (Scholtz et Edgecombe, 2006).

Nom du descripteur: Rominger
Date de la description : 1887
Étymologie :

Zacanthoides – probablement du grec z(a), « très », akanthion, « chardon », « porc-épic » ou « hérisson », et oïdes, « semblable à », soit très semblable à un chardon ou à un porc-épic.

romingeri – d’après Carl Rominger, paléontologue du Michigan qui a publié les premières descriptions de trilobites du mont Stephen en 1887.

Spécimens types : Statut du type en cours de révision – UMMP 4871 (deux spécimens) conservés au Musée de paléontologie de l’Université du Michigan, Ann Arbor, Michigan, États-Unis.
Autres espèces :

Schistes de Burgess et environs : Zacanthoides sexdentatus, Z. submuticus, Z. longipygus, Z. planifrons et Z. divergens, provenant tous de roches plus anciennes ou plus récentes du Cambrien moyen des monts Stephen, Odaray et Park (Rasetti, 1951).

Autres dépôts : autres espèces ailleurs en Amérique du Nord.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Couches à trilobite sur le mont Stephen.

Histoire de la recherche

Bref historique de la recherche :

En 1887, Carl Rominger a publié la gravure d’un trilobite presque complet et nettement épineux qu’il a nommé Embolimus spinosa. En 1908, Charles Walcott a établi Zacanthoides spinosus pour décrire l’espèce du mont Stephen et un trilobite semblable du Nevada. En 1942, Charles Resser, de l’United States National Museum, affirme que l’espèce du mont Stephen est suffisamment distincte pour qu’on lui attribue un nouveau nom. Resser décide de rendre hommage à celui qui avait été le premier à décrire officiellement de nombreux trilobites du mont Stephen; Zacanthoides romingeri est toujours en usage.

Description

Morphologie :

Parties dures : l’exosquelette dorsal adulte peut mesurer jusqu’à 6 cm de long, s’amincissant à partir d’un grand céphalon en forme de croissant, à travers un thorax composé de neuf segments, jusqu’à un pygidium triangulaire relativement petit et arrondi présentant de longues épines marginales.

Les larges joues libres sont dotées de robustes épines génales; de courtes épines intragénales marquent les angles postérieurs des joues libres. La glabelle est longue et étroite, légèrement plus développée vers l’avant. On compte quatre paires de sillons glabellaires latéraux; les deux paires antérieures sont moins prononcées et forment un angle antérieur, alors que les deux paires postérieures sont plus prononcées et forment un angle postérieur. Les yeux, très longs et étroits, sont situés sur la partie antérieure du céphalon et se courbent en arc vers l’extérieur. L’anneau occipital se prolonge antérieurement en une épine robuste. Les longues épines terminales de la large plèvre se courbent progressivement vers l’arrière. Une mince épine émerge de l’anneau axial du huitième segment thoracique. Le pygidium compte quatre anneaux axiaux; cinq paires d’épines marginales, chacune plus courte que la précédente, sont orientées vers l’arrière et se prolongent au-delà de l’extrémité du pygidium.

Anatomie non minéralisée : inconnue.

Abondance :

Zacanthoides romingeri est relativement abondant dans les couches à trilobites sur le mont Stephen, mais absent sur la crête aux Fossiles. Les spécimens complets, avec les joues libres en place, sont très rares. L’espèce est surtout présente sous forme de sclérites désarticulées. Cependant, ses caractéristiques permettent habituellement de l’identifier facilement, même lorsqu’il s’agit de fragments isolés.

Taille maximum :
60 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

Zacanthoides romingeri adulte marchait très probablement sur le fond marin. Son aspect épineux servait peut-être à dissuader les prédateurs, ou encore, à « brouiller » sa silhouette, le rendant plus difficile à discerner sur le fond marin (Rudkin, 1996).

Références

RASETTI, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections, 116 (5): 1-277.

RESSER, C. E. 1942. Fifth contribution to nomenclature of Cambrian trilobites. Smithsonian Miscellaneous Collections, 101 (15): 1-58.

ROMINGER, C. 1887. Description of primordial fossils from Mount Stephens, N. W. Territory of Canada. Proceedings of the Academy of Natural Sciences of Philadelphia, 1887: 12-19.

RUDKIN, D. M. 1996. The Trilobite Beds of Mount Stephen, Yoho National Park, p. 59-68. In R. Ludvigsen (ed.), Life in Stone – A Natural History of British Columbia’s Fossils. UBC Press, Vancouver.

RUDKIN, D. M. 2009. The Mount Stephen Trilobite Beds, p. 90-102. In J.-B. Caron and D. Rudkin (eds.), A Burgess Shale Primer – History, Geology, and Research Highlights. The Burgess Shale Consortium, Toronto.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216: 395-415.

WALCOTT, C. D. 1888. Cambrian fossils from Mount Stephens, Northwest Territory of Canada. American Journal of Science, Series 3, 36: 163-166.

WALCOTT, C. D. 1908. Mount Stephen rocks and fossils. Canadian Alpine Journal, 1:232-248.

Autres liens :

Odaraia alata

Reconstitution 3D d’Odaraia alata.

MODÈLE 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Odaraia alata
Remarques:

Les affinités d’Odaraia sont incertaines. Bien qu’anciennement considéré comme un crustacé (Walcott, 1912; Briggs, 1981; Briggs et Fortey, 1989; Hou et Bergström, 1997; Wills et al., 1998), des études relativement récentes le placent dans la lignée souche supérieure des arthropodes (Budd, 2002, 2008).

Nom du descripteur: Walcott
Date de la description : 1912
Étymologie :

Odaraia – d’après la montagne Odaray (3 159 m) du parc national du Canada Yoho, nommée par J. J. McArthur en 1887; le nom est dérivé de l’expression assiniboine des Nakoda signifiant « chutes d’eau nombreuses ».

alata – du latin ala, « aile », en référence aux ailerons de la queue de l’animal.

Spécimens types : Lectotype – USNM 57722 (O. alata) conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : aucune.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrières Walcott et Raymond sur la crête aux Fossiles.

Histoire de la recherche

Bref historique de la recherche :

Odaraia a été décrit pour la première fois par Walcott (1912) et a été réexaminé brièvement par Simonetta et Delle Cave (1975). Une révision profonde du genre a été publiée par Briggs (1981); Odaraia a ensuite été mentionné dans plusieurs études sur l’évolution des arthropodes (Briggs et Fortey, 1989; Hou et Bergström, 1997; Wills et al., 1998; Budd, 2002). De nouvelles caractéristiques morphologiques de l’intestin et de la région céphalique ont été décrites indépendamment par Butterfield (2002) et Budd (2008).

Description

Morphologie :

La majeure partie du corps d’Odaraia est enveloppée d’une imposante carapace, dont la ligne cardinale est située le long de la ligne médiane dorsale. Les deux valves sont unies ventralement, ce qui est très particulier. Cette carapace forme un tube ouvert à l’avant et à l’arrière de l’animal. La tête dépasse du tube et comprend une sclérite (petite plaque) antérieure, qui soutient une paire de grands yeux sphériques juchés sur de courts pédoncules. Entre ces deux grands yeux, la tête présente trois petites taches très réfléchissantes, qui pourraient avoir été des yeux médians. Le corps compte plus ou moins 47 segments dotés d’une paire d’appendices. Au niveau des deux premiers segments, les appendices consistent en de minces branches segmentées adaptées à la marche, mais postérieurement, ce sont des appendices biramés. Les appendices biramés se divisent en une branche interne dotée d’une grande épine basale et qui se ramifie en deux branches locomotrices distales et une branche externe porteuse de lamelles filamenteuses. Le telson (queue) est formé de trois ailerons; deux de ces ailerons s’étendent latéralement et le troisième, verticalement. L’intestin, typiquement rectiligne, possède une paire de glandes dans sa partie moyenne.

Abondance :

Odaraia compte pour moins de 0,5 % de la faune de la carrière Walcott, dans laquelle plus de 200 spécimens ont été recueillis (Caron et Jackson, 2008). Une douzaine de spécimens proviennent de la carrière Raymond.

Taille maximum :
150 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

La carapace tubulaire d’Odaraia aurait confiné les appendices ventraux, qu’elle aurait par conséquent rendus inutilisables pour la marche sur le lit marin. Odaraia nageait probablement dans la colonne d’eau par ondulations des branches internes segmentées de ses appendices biramés. Les branches externes filamenteuses auraient servi à la respiration.

La présence de grands yeux et de glandes intestinales suggère que l’animal était un prédateur actif, à la recherche d’organismes en train de nager ou de flotter. Il aurait « filtré » les organismes présents dans le courant d’eau qui entrait à l’avant et ressortait à l’arrière de sa carapace tubulaire. Il a été avancé qu’Odaraia nageait sur le dos, un peu à la manière des limules modernes, afin de réduire la traînée créée au niveau de sa ligne cardinale. Le grand telson aurait servi de stabilisateur, notamment pour éviter le roulis, de gouvernail et de frein lors de la nage.

Références

BRIGGS, D. E. G. 1981. The arthropod Odaraia alata Walcott, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 291: 541-582.

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

BUDD, G. E. 2008. Head structures in upper stem-group euarthropods. Palaeontology, 51: 561-573.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

Autres liens :

Aucun

Naraoia compacta

Reconstitution de Naraoia compacta.

© MARIANNE COLLINS

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Naraoia compacta
Remarques:

Naraoia est habituellement comparé aux trilobites, mais ses affinités exactes demeurent incertaines (Whittington, 1977). Les naraoiidés et d’autres arthropodes ressemblant aux trilobites, auxquels il est parfois fait référence avec la classe Trilobitoidea, peuvent être groupés avec les trilobites pour former la super classe Lamellipedia (Hou et Bergström, 1997; Wills et al., 1998; Edgecombe et Ramsköld, 1999). Lamellipedia a été placée dans la lignée souche supérieure des arthropodes (Budd, 2002), dans la lignée souche des mandibulates (Scholtz et Edgecombe, 2006) et dans la lignée souche des chélicérates (Cotton et Braddy, 2004).

Nom du descripteur: Walcott
Date de la description : 1912
Étymologie :

Naraoia – des lacs Narao situés près du col de Kicking Horse dans le parc national Yoho, Colombie-Britannique. Chez les Nakoda le mot assiniboine narao signifie « frappé à l’estomac »; il fait probablement allusion à la mésaventure de James Hector, qui reçut un coup de pied de cheval lors de sa remontée de la rivière Kicking Horse en 1858.

compacta – du latin compactus, « bien assemblé ».

Spécimens types : Lectotype – USNM 57687 (N. compacta) et holotypesUSNM 83946 (N. spinifer) etUSNM 189210 (N. halia) conservés au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : N. spinifer (Walcott, 1931) et N. halia (Simonetta et Delle Cave, 1975) de la carrière Walcott.

Autres dépôts : N. longicaudata et spinosa (Zhang et Hou, 1985) du biote de Chengjiang du Cambrien précoce, Chine méridionale – N. longicaudata a été place ultérieurement dans son propre genre, Misszhouia (Chen et al., 1997); des spécimens possibles de Naraoia dans les schistes d’Emu Bay du Cambrien inférieur, Australie (Nedin, 1999). À la différence de la plupart des arthropodes des schistes de Burgess, Naraoia a également été trouvé dans des couches postérieures au Cambrien, soit dans la formation de Bertie du Silurien supérieur au sud de l’Ontario (Caron et al., 2004).

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrières Walcott et Raymond sur la crête aux Fossiles. Couches à trilobites, couches à tulipes (S7), carrière Collins, autres sites moins importants sur le mont Stephen.

Histoire de la recherche

Bref historique de la recherche :

La première description de Naraoia, effectuée par Walcott (1912), portait sur N. compacta. Walcott a ensuite décrit un deuxième spécimen et défini l’espèce N. spinifer (1931). Simonetta et Delle Cave (1975) ont réexaminé les spécimens et ont donné les noms de N. halia et N. pammon aux nouvelles espèces. Whittington (1977) a redécrit l’ensemble des fossiles des schistes de Burgess, tandis que Robison (1984) a décrit des spécimens de N. compacta provenant de la formation de Marjum dans l’Utah et de la formation de Gibson dans l’Idaho; les deux chercheurs ont établi la synonymie de N. halia et N. pammon et de N. compacta. Une révision profonde des Naraoiidés entreprise par Zhang et al. (2007) a cependant conclu que N. halia constitue un espèce valide.

Description

Morphologie :

Naraoia possède deux boucliers dorsaux ovoïdes avec une région axiale convexe, soit un bouclier céphalique et un bouclier allongé protégeant le reste du corps. Une paire de longues antennes articulées émerge du bouclier antérieur. À l’arrière des antennes, se trouvent 4 paires d’appendices céphaliques et au niveau du tronc, 14 autres paires. Tous ces appendices sont segmentés et biramés : ils comportent une branche locomotrice en sept segments adaptée à la marche et une branche filamenteuse constituée d’une fine hampe à laquelle s’attachent de nombreuses lamelles (éléments souples et allongés en forme de lame). L’article basal des appendices biramés ressemble à une grande plaque épineuse.

Les structures internes de Naraoia sont bien conservées, la caractéristique la plus évidente étant les glandes intestinales à ramifications complexes, qui apparaissent sur le bouclier céphalique. L’intestin parcourt le corps sur toute sa longueur; des glandes intestinales appariées sont visibles dans la moitié antérieure.

Abondance :

Des centaines de spécimens de Naraoia ont été recueillis dans la carrière Walcott, où ils comptent pour 0,74 % environ de la faune (Caron et Jackson, 2008). Naraoia est rare dans tous les autres sites.

Taille maximum :
40 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

Naraoia aurait marché sur le lit marin la plupart du temps, la rigidité de ses appendices ne permettant pas des périodes de nage prolongées. Ses antennes, vraisemblablement sensorielles, lui auraient permis de repérer de la nourriture. Naraoia utilisait les membres locomoteurs de ses appendices biramés pour marcher et manipuler ses aliments, qu’il broyait et amenait vers sa bouche à l’aide de la plaque épineuse située à la base des appendices. Les branchies filamenteuses servaient de surface d’échanges gazeux et propulsaient l’animal dans la colonne d’eau pendant de brèves périodes de nage. Les grandes glandes intestinales et les appendices épineux suggèrent que Naraoia était un prédateur ou avait un comportement détritivore. Les cicatrices portées par certains spécimens suggèrent que Naraoia était également une proie pour des prédateurs de taille supérieure.

Références

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., D. M. RUDKIN AND S. MILLIKEN. 2004. A new Late Silurian (Pridolian) naraoiid (Euarthropoda: Nektaspida) from the Bertie Formation of southern Ontario, Canada – delayed fallout from the Cambrian explosion. Journal of Paleontology, 78: 1138-1145.

CHEN, J. G. D. EDGECOMBE AND L. RAMSKöLD. 1997. Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang fauna, China. Records of the Australian Museum, 49: 1-24.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

EDGECOMBE, G. D. AND L. RAMSKÖLD. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology, 73: 263-287.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

NEDIN, C. 1999. Anomalocaris predation on nonmineralized and mineralized trilobites. Geology, 27: 987-990.

ROBISON, R. B. 1984. New occurrence of the unusual trilobite Naraoia from the Cambrian of Idaho and Utah. University of Kansa Paleontological Contribution, 112: 1-8.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216: 395-415.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WALCOTT, C. D. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85: 1-46.

WHITTINGTON, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, B, 280: 409-443.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

ZHANG, W. AND X. HOU. 1985. Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia. Acta Palaeontologica Sinica, 24: 591-595.

ZHANG, X., D. SHU AND D. H. ERWIN. 2007. Cambrian naraoiids (Arthropoda): Morphology, ontogeny, systematics and evolutionary relationships. Journal of Paleontology, 81:1-52.

Autres liens :

http://paleobiology.si.edu/burgess/naraoia.html

Skania fragilis

Skania fragilis (ROM 60752) – Empreinte (rangée du haut) et contre-empreinte (rangée du bas). Spécimen complet avec ses antennes. Longueur du spécimen = 11 mm. Spécimen sec, lumière polarisée (colonne de gauche); spécimen humide (colonne de droite). Carrière Raymond.

© MUSÉE ROYAL DE L’ONTARIO. PHOTOS : JEAN-BERNARD CARON

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Skania fragilis
Remarques:

Les affinités de Skania sont controversées, mais la plupart des chercheurs s’accordent à l’apparenter aux arthropodes. Similaire à Primicaris (Lin et al., 2006; Zhang et al., 2007), il est lui aussi comparé aux trilobites à corps mous tels que Naraoia (Walcott, 1931; Zhang et al., 2007; Hou et Bergström, 1997). D’autres chercheurs suggèrent que les deux taxons sont apparentés à l’énigmatique taxon Parvancorina de la faune d’Ediacara (Delle Cave et Simonetta, 1975; Gehling, 1991; Conway Morris, 1993; Simonetta et Insom, 1993) et que ces trois taxons forment un clade en position de groupe frère par rapport aux trilobites (Lin et al., 2006).

Nom du descripteur: Walcott
Date de la description : 1931
Étymologie :

Skania – d’après le glacier Skana à proximité du mont Robson en Colombie-Britannique, Canada.

fragilis – du latin fragilis, « fragile », en référence à la nature délicate et à la petite taille de l’animal.

Spécimens types : Holotype – USNM 83950 conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : Skania sundbergi Lin et al., 2006 de la formation de Kaili Formation en Chine.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrières Walcott et Raymond sur la crête aux Fossiles.

Histoire de la recherche

Bref historique de la recherche :

Skania fragilis a été décrit pour la première fois par Walcott (1931) dans une monographie posthume publiée par son adjoint, Charles Resser, qui a comparé Skania aux trilobites et à Naraoia. Une nouvelle description de Delle Cave et Simonetta (1975) a suggéré que Skania serait plutôt apparenté au taxon Parvancorina minchami Glaessner, 1958 de la faune d’Ediacara. L’affinité a été longuement débattue (Gehling, 1991; Conway Morris, 1993; Simonetta et Insom, 1993; Lin et al., 2006) et Skania a également été comparée à Primicaris Zhang et al., 2003 de manière approfondie. Skania et Primicaris ont par ailleurs été interprétés comme des protaspides (larves) de naraoiidés (Hou et Bergström, 1997).

Description

Morphologie :

Skania porte un bouclier dorsal mou et indifférencié, dont la forme évoque celle d’un cerf-volant. Ce bouclier est arrondi dans la région frontale de la tête; il rétrécit vers l’arrière pour se terminer en une paire de courtes pointes marginales à l’extrémité postérieure du corps. Deux pointes génales orientées postérieurement saillent au niveau où le bouclier atteint sa largeur maximale. La marge postérieure de la tête est délimitée par une étroite bordure fortement arquée vers l’avant, et la région céphalique occupe un quart de la longueur de l’exosquelette. L’intestin moyen a été conservé dans la région axiale du tronc chez certains spécimens. Les appendices ont été mal conservés. Ils consistent en une paire d’antennes antérieures et au moins dix paires de membres au niveau du corps.

Abondance :

Skania fragilis est connu d’après l’étude de moins de 40 spécimens.

Taille maximum :
17 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

Le mode de vie de Skania est indéterminé, car certains aspects importants de sa morphologie demeurent énigmatiques. La similarité globale avec Primicaris, dont les appendices sont biramés, permet de formuler l’hypothèse que les appendices de Skania l’étaient également. Les deux animaux auraient marché sur le plancher sous-marin et auraient utilisé leurs branches externes filamenteuses pour extraire de l’oxygène de l’eau et nager épisodiquement. N’ayant pas d’yeux, Skania utilisait probablement ses antennes pour recueillir de l’information sur son environnement. Ses stratégies alimentaires sont inconnues.

Références

CONWAY MORRIS, S. 1993. Ediacaran-like fossil in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36: 593-635.

DELLE CAVE, L. AND A. M. SIMONETTA. 1975. Notes on the morphology and taxonomic position of Aysheaia (Onycophora?) and of Skania (undetermined phylum). Monitore Zoologico Italiano New Series, 9: 67-81.

GEHLING, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree, p. 181-223. In B. P. Radhakrishna (ed.), The world of Martin F. Glaessner. Geological Society of India, Bangalore.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

LIN, J., S. M. GON III, J. G. GEHLING, L. E. BABCOCK, Y. ZHAO, X. ZHANG, S. HU, J. YUAN M. YU AND J. PENG. 2006. A Parvancorina-like arthropod from the Cambrian of South China. Historical Biology, 18: 33-45.

SIMONETTA, A. M. AND E. INSOM. 1993. New animals from the Burgess Shale (Middle Cambrian) and their possible significance for the understanding of the Bilateria. Bolletino di Zoologia, 60: 97-107.

WALCOTT, C. D. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85: 1-46.

ZHANG, X., D. SHU AND D. H. ERWIN. 2007. Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. Palaeontological Society Memoir, 68: 1-52.

Autres liens :

Aucun

Sidneyia inexpectans

Reconstitution 3D de Sidneyia inexpectans.

RECONSTITUTION 3D DE PHLESCH BUBBLE © MUSÉE ROYAL DE L’ONTARIO

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Sidneyia inexpectans
Remarques:

Sidneyia est habituellement considéré comme un taxon étroitement apparenté aux chélicérates, mais sa position exacte par rapport au groupe est nébuleuse (Budd et Telford, 2009). Il occupe en effet la place de groupe frère (Hou et Bergström, 1997), de taxon proche de la couronne dans la lignée souche (Bruton, 1981; Edgecombe et Ramsköld, 1999; Hendricks et Lieberman, 2008) ou de taxon basal dans la lignée souche (Briggs et Fortey, 1989; Wills et al., 1998; Cotton et Braddy, 2004) des chélicérates.

Nom du descripteur: Walcott
Date de la description : 1911
Étymologie :

Sidneyia – d’après Sidney le prénom du fils de Walcott, qui découvrit le premier spécimen en août 1910.

inexpectans – du latin inexpectans, « inattendu », car Walcott ne s’attendait pas à trouver un tel fossile dans une strate plus ancienne que l’Ordovicien.

Spécimens types : Lectotype – USNM 57487 (S. inexpectans) conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : Un unique spécimen de la faune de Chengjiang en Chine a été utilisé pour décrire une deuxième espèce, Sidneyia sinica (Zhang et al., 2002), qui a ensuite été retirée du genre (Briggs et al., 2008).

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (505 millions d’années environ).
Sites principaux :

Schistes de Burgess et environs : carrières Walcott, Raymond et Collins sur la crête aux Fossiles, le mont Field, le mont Stephen – couches à tulipes (S7) et autres sites moins importants – le mont Odaray et le glacier Stanley.

Autres dépôts : Sidneyia a été décrit d’après des spécimens de la formation de Wheeler (Briggs et Robison, 1984), des schistes de Spence dans l’Utah (Briggs et al. 2008) et de la formation Kinzers en Pennsylvanie (Resser et Howell, 1938).

Histoire de la recherche

Bref historique de la recherche :

Sidneyia est le premier fossile des schistes de Burgess décrit par Walcott (1911). Des détails ont été ajoutés à la description par Walcott l’année suivante (Walcott, 1912); Strømer (1944) et Simonetta (1963) ont apporté des révisions mineures à la reconstitution de Walcott. Un grand appendice isolé a été initialement décrit comme un appendice frontal de Sidneyia (Walcott, 1911), mais il s’est avéré plus tard qu’il appartenait à l’anomalocaride Laggania (Whittington et Briggs, 1985).Les espèces ont été décrites à nouveau à partir des centaines de spécimens disponibles dans le cadre d’une importante étude menée par Bruton (1981).

Description

Morphologie :

Sidneyia présente un bouclier céphalique convexe, court, large et subrectangulaire en vue frontale. Les deux coins latéraux du bouclier son entaillés pour permettre le passage d’une antenne et d’un pédoncule oculaire. Mise à part la paire d’antennes longues et minces, qui compte au moins 20 articles, la tête ne porte pas d’appendices. Des yeux hémisphériques, très réfléchissants, saillent au-dessus et en arrière des antennes.

Le thorax de Sidneyia compte neuf segments corporels minces, qui s’élargissent du premier au quatrième segment, puis s’amincissent progressivement jusqu’au telson. Les quatre premiers segments thoraciques accueillent des appendices dotés d’un important article basal (coxa) et de huit articles plus légers se terminant en pince acérée. Les cinq segments thoraciques suivants portent des appendices similaires, mais les membres y sont associés à des rameaux de filaments formant une sorte d’aile.

L’abdomen consiste en trois segments beaucoup plus fins que ceux du thorax et se termine en un telson triangulaire. Le dernier segment abdominal possède une paire de larges palettes qui s’articulent avec le telson pour constituer un éventail caudal. Une trace d’intestin droit est observable chez certains spécimens; l’organe s’étend de la bouche (antérieure) à l’anus (au niveau du telson) et contient parfois des trilobites, qui ont été conservés.

Abondance :

Sidneyia est un arthropode relativement commun dans la carrière Walcott, où il représente 0,3 % des spécimens recensés (Caron et Jackson, 2008). Des centaines de spécimens ont été recueillis dans la carrière Walcott (Bruton, 1981) et d’autres sites des environs.

Taille maximum :
160 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

Sidneyia nageait et marchait sur le plancher sous-marin. Ses quatre paires antérieures d’appendices thoraciques lui auraient servi à se déplacer et ses coxae basales épineuses, à broyer les aliments et à les acheminer d’arrière en avant jusqu’à la bouche. En ondulant, les rameaux de filaments de ses cinq paires postérieures d’appendices thoraciques lui auraient permis de se propulser dans la colonne d’eau. Ces filaments auraient en outre participé à la respiration en jouant le rôle de branchies.

La nature prédatrice de Sidneyia est révélée par ses coxas épineuses, qui lui permettaient de mastiquer la nourriture, et la présence de morceaux de petits animaux fossilisés dans son intestin. Sidneyia se serait déplacé au-dessus du plancher sous-marin en utilisant ses yeux et ses antennes pour rechercher des proies, qu’il aurait saisies et écrasées avec ses appendices antérieurs.

Références

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BRIGGS, D. E. G. AND R. A. ROBISON. 1984. Exceptionally preserved non-trilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, 111: 1-24.

BRIGGS, D. E. G., B. S. LIEBERMAN, J. R. HENDRICKS, S. L. HALGEDAHL AND R. D. JARRARD. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82(2): 238-254.

BRUTON, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 295: 619-653.

BUDD, G. E. AND M. J. TELFORD. 2009. The origin and evolution of arthropods. Nature, 457(7231): 812-817.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CARON, J.-B., R. GAINES, G. MANGANO, M. STRENG, AND A. DALEY. 2010. A new Burgess Shale-type assemblage from the « thin » Stephen Formation of the Southern Canadian Rockies. Geology, 38: 811-814.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

EDGECOMBE, G. D. AND L. RAMSKÖLD. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Jounral of Paleontology, 73: 263-287.

HENDRICKS , J. R. AND B. S. LIEBERMAN. 2008. Phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. Journal of Paleontology, 82: 585-594.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

RASSER, C. E. AND B. F. HOWELL. 1938. Lower Cambrian Olenellus zone of the Appalachians. Bulletin of the Geological Society of America, 49: 195-248.

SIMONETTA, A. M. 1963. Osservazioni sugli artropodi non trilobiti della Burgess Shale (Cambriano medio). II. Contributo: I Generai Sidneyia ed Amiella Walcott 1911. Monitore Zoologico Italiano, 70: 97-108.

STØMER, L. 1944. On the relationships and phylogeny of fossil and recent Arachnomorpha. Norsk Videnskaps-Akademi Skrifter I. Matematisk-Naturvidenskaplig Klasse, 5: 1-158.

WALCOTT, C. D. 1911. Middle Cambrian Merostomata. Cambrian geology and paleontology II. Smithsonian Miscellaneous Collections, 57: 17-40.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WHITTINGTON, H. B. AND D. E. G. BRIGGS. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British-Columbia. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 309: 569-609.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, pp. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

ZHU, X., H. JIAN AND S. DEGAN. 2002. New occurrence of the Burgess Shale arthropod Sidneyia in the Early Cambrian Chengjiang Lagerstätte (South China), and revision of the arthropod Urokodia. Alcheringa: An Australasian Journal of Palaeontology, 26: 1-18.

Autres liens :

Sarotrocercus oblita

Reconstitution de Sarotrocercus oblita.

© MARIANNE COLLINS

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Sarotrocercus oblita
Remarques:

L’affinité phylogénétique de Sarotrocercus est incertaine, car on en en sait trop peu sur sa morphologie pour établir une désignation définitive. Fryer (1998) le considérait comme le plus primitif de tous les arthropodes, tandis que Cotton et Braddy (2004) l’ont classé parmi les arachnomorphes. Sarotrocercus a également été associé à des taxons de la classe Megacheira, tels Yohoia (p. ex. Briggs et Fortey, 1989) et Leanchoilia (p. ex., Wills et al., 1995; 1998).

Nom du descripteur: Whittington
Date de la description : 1981
Étymologie :

Sarotrocercus – du grec sarotes, « balayeur », et kerkops, « singe à longue queue », en référence à l’aspect plumeux de la queue de l’animal.

oblita – du latin oblitus, « oublié », peut-être en référence au fait que les quelques spécimens de l’espèce ont été décrits comme appartenant à une autre espèce.

Spécimens types : Holotype – USNM 144890 (empreinte) et UNSM 272171 (contre-empreinte) conservés au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : aucune.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrière Walcott sur la crête aux Fossiles.

Histoire de la recherche

Bref historique de la recherche :

Harry Whittington a établi le genre Sarotrocercus en 1981 après étude de sept spécimens initialement inclus sous Molaria spinifera (Simonetta et Delle Cave, 1975). Les fossiles n’ont pas fait l’objet de recherches depuis, bien qu’il ait été question de Sarotrocercus dans de nombreuses études des relations au sein des arthropodes (p. ex., Briggs et Fortey, 1989; Wills et al., 1995; Fryer, 1998).

Description

Morphologie :

Le corps est ovale et constitué d’un bouclier céphalique et d’un tronc divisé en neuf segments imbriqués. Un segment postérieur cylindrique porte une fine pointe relativement courte terminée par un faisceau de petits piquants disposés en éventail. L’animal a une longueur totale d’environ 1,5 cm. Le bouclier céphalique n’est pas très développé, mais il porte une paire de gros yeux pédonculés jaillissant de sous sa bordure ainsi qu’une paire d’appendices articulés. Chacun des neuf segments du tronc porte une paire d’appendices lobés à frange ciliée qui agissaient peut-être comme branchies.

Abondance :

S. oblita est rare dans les schistes de Burgess. Sa description initiale s’appuyait sur 7 spécimens (Whittington, 1981); 28 autres spécimens ont été récoltés dans la carrière Walcott, où ils comptent pour moins de 0,1 % de la faune fossile (Caron et Jackson, 2008).

Taille maximum :
16 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

L’absence d’appendices locomoteurs, combinée à la présumée souplesse du corps, semble indiquer que Sarotrocercus utilisait ses appendices en forme de pagaie et sa longue queue pour nager, probablement sur le dos. Sa rareté dans les schistes de Burgess laisse supposer qu’il passait beaucoup de temps dans la colonne d’eau, évitant ainsi les glissements sous-marins qui ont englouti des organismes benthiques. L’absence de sédiments dans l’intestin donne à croire qu’il était suspensivore (Briggs et Whittington, 1985; Whittington, 1981).

Références

BRIGGS, D. E. G. AND R. A. FORTEY, 1989. The Early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BRIGGS, D. E. G. AND H. B. WHITTINGTON, 1985. Modes of life of arthropods from the Burgess Shale, British Columbia. Transactions of the Royal Society of Edinburgh. Earth Sciences, 76(2-3): 149-160.

CARON, J.-B. AND D. A. JACKSON, 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

COTTON, T. J. AND S. J. BRADDY, 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh, 94(03): 169-193.

FRYER, G. 1998. A defence of arthropod polyphyly, p. 23. In R. A. Fortey and R. H. Thomas (eds.), Arthropod relationships. Springer, London.

SIMONETTA, A. M. AND L. DELLE CAVE, 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.

WHITTINGTON, H. B. 1981. Rare arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 292(1060): 329-357.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY AND M. WILKINSON, 1995. The significance of fossils in understanding arthropod evolution. Verhandlungen den deutschen zoologischen Gesellschaft, 88: 203-216.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH, 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

Autres liens :

Aucun

Sanctacaris uncata

Reconstitution de Sanctacaris uncata.

© MARIANNE COLLINS

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Sanctacaris uncata
Remarques:

À l’origine, Sanctacaris était considéré comme un taxon du groupe couronne des chélicérates (Briggs et Collins, 1988), mais des analyses ultérieures l’ont associé aux arachnomorphes (Dunlop et Seldon, 1997; Wills et al., 1998; Sutton et al., 2002) ou placé dans la lignée souche des euarthropodes (Budd, 2002).

Nom du descripteur: Briggs and Collins
Date de la description : 1988
Étymologie :

Sanctacaris – du latin sanctus, « saint » (en référence au nom de terrain « santa claws »), et de caris, « crabe » ou « crevette ».

uncata – du latin uncata, « recourbé » ou « crochu », en référence aux nombreuses pinces.

Spécimens types : Holotype – ROM 43502 conservé au Musée royal de l’Ontario, Toronto, Ontario, Canada.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : aucune.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrière Collins sur le mont Stephen.

Histoire de la recherche

Bref historique de la recherche :

Sanctacaris a été décrit pour la première fois par Briggs et Collins en 1988 et a été mentionné dans plusieurs études sur les relations phylogénétiques des arthropodes (p. ex., par Briggs et Fortey, 1989; Dunlop et Seldon, 1997; Wills et al., 1998; Sutton et al., 2002; Budd, 2002).

Description

Morphologie :

La tête de Sanctacaris est protégée par un grand bouclier céphalique et possède six paires d’appendices biramés orientés vers l’avant. Le tronc compte 11 segments et un large telson. La longueur du corps varie entre 4,6 et 9,3 cm. Le bouclier céphalique, prolongé par deux extensions triangulaires latérales, est convexe dans sa partie médiane. Ce bouclier abrite une paire d’yeux qui sortent près des coins latéraux de sa marge antérieure. Les six appendices céphaliques, biramés, ont une branche externe mince ressemblant à une antenne et un appendice interne bordé d’épines rappelant une serre d’oiseau de proie. Le reste du corps est divisé en 11 segments. Chaque segment comprend une région médiane surélevée et de larges extensions latérales. Il accueille en outre une paire de membres biramés. Chaque membre biramé consiste en une large palette frangée de setae et une branche locomotrice fine et segmentée. Le telson, ample et doté d’une bordure pileuse, a la forme d’une extrémité de pagaie.

Abondance :

Sanctacaris est connu d’après cinq spécimens du mont Stephen.

Taille maximum :
93 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

Sanctacaris aurait vécu sur le plancher sous-marin ou juste au-dessus de ce dernier. La présence d’appendices frontaux et d’yeux indique que l’animal aurait été un prédateur qui nageait librement. Les grandes palettes des appendices du tronc auraient servi à propulser l’animal dans l’eau; le telson et les extensions latérales de la tête et du corps, à le stabiliser et le diriger. Les branches en forme de serres des appendices céphaliques biramés permettaient probablement de capturer des proies, tandis que les branches en forme d’antennes auraient été sensorielles.

Références

BRIGGS, D. E. G. AND D. COLLINS. 1988. A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology, 31: 779-798.

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

DUNLOP, J. A. AND P. A. SELDEN. 1997. The early history and phylogeny of chelicerates, pp. 221-235. In R. A Fortey and R. Thomas (eds.), Arthropod phylogeny. Chapman and Hall, London.

SUTTON, M. D., D. E. G. BRIGGS, D. J. SIVETER, D. J. SIVETER AND P. J. ORR. 2002. The arthropod Offacolus kingi (Chelicerata) from the Silurian of Herefordshire, England: computer based morphological reconstructions and phylogenetic affinities. Proceedings of the Royal Society of London, Series B, 269: 1195-1203.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

Autres liens :

Aucun

Ptychagnostus praecurrens

Ptychagnostus praecurrens (USNM 116212). Spécimen complet interprété initialement comme l’holotype de Triplagnostus burgessensis par Rasetti (1951). Longueur du spécimen = 8 mm. Spécimen sec, lumière directe. Carrière Walcott.

© SMITHSONIAN INSTITUTION – MUSÉE NATIONAL D’HISTOIRE NATURELLE. PHOTO : JEAN-BERNARD CARON

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Trilobites (Ordre : Agnostida)
Nom d’espèce: Ptychagnostus praecurrens
Remarques:

Les trilobites sont des euarthropodes éteints, probablement des représentants de la lignée souche des mandibulés, qui regroupent les crustacés, les myriapodes et les hexapodes (Scholtz et Edgecombe, 2006).

Nom du descripteur: Westergård
Date de la description : 1936
Étymologie :

Ptychagnostus – du grec ptycho, « plissé » (certaines espèces ont des sillons ressemblant à des plis sur le céphalon), et agnôs, « inconnu » ou « qui ne peut être connu ».

praecurrens – du latin prae, « en avant », et currens, « courir », en référence à l’âge avancé de ce fossile.

Spécimens types : Holotype – SGU 611 conservé à la Commission géologique de Suède (Sveriges geologiska undersökning – SGU), Uppsala, Suède (Westergård, 1936).
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : d’autres espèces sont présentes dans les roches du Cambrien moyen partout dans le monde.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrière Walcott sur la crête aux Fossiles.

Histoire de la recherche

Bref historique de la recherche :

Les trilobites appartenant actuellement à ce genre et à cette espèce ont été décrits sous plusieurs noms composés. À l’origine, Rasetti (1951) a attribué à l’espèce le nom de Triplagnostus burgessensis; par la suite, il (Rasetti, 1967) a conclu que T. burgessensis était un synonyme de Ptychagnostus praecurrens (Westergård, 1936), un nom retenu par Peng et Robison (2000) malgré de nombreuses variations.

Description

Morphologie :

Parties dures: l’exosquelette dorsal adulte mesure environ 8 mm de long. Le céphalon est hémisphérique; la bordure céphalique est étroite sur le devant et les côtés; les angles génaux sont très arrondis. L’organisme est dépourvu d’yeux dorsaux et sutures faciales. La glabelle étroite décrit un arc ogival, avec un sillon médian se prolongeant sur le court champ préglabellaire vers la marge antérieure; un sillon transverse coupe la glabelle juste devant un tubercule bas situé derrière le point médian. Deux courts segments thoraciques portent des nodules latéraux sur les anneaux axiaux. Un pygidium à bordure étroite, de même taille et forme générale que le céphalon, présente des angles latéraux postérieurs. De forme semblable à la glabelle, l’axe pygidial est plus large et présernte avec un tubercule médian entre deux sillons transversaux. L’extrémité pointue de l’axis se prolonge presque jusqu’au bord postérieur, sans sillon médian.

Anatomie non minéralisée: inconnue.

Abondance :

Très commun dans la carrière Walcott sur la crête aux Fossiles, où il est le trilobite le plus abondant (Caron et Jackson, 2008).

Taille maximum :
10 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

Les trilobites adultes Eodiscina ont souvent été considérés comme des organismes pélagiques qui nageaient ou flottaient dans la colonne d’eau. Tout porte à croire que la plupart étaient des membres de l’épifaune benthique mobile, peut-être des microbrouteurs ou des dépositivores, qui vivaient de préférence dans des eaux plus froides et profondes, au large des côtes.

Références

Bibliographie :

CARON, J.-B. AND JACKSON, D. A. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:222-256.

PENG, S. C. AND ROBISON, R. A. 2000. Agnostoid biostratigraphy across the middle-upper Cambrian boundary in Hunan, China. Paleontological Society Memoir, no. 53 (supplement to Journal of Paleontology), 74(4), 104 pp.

RASETTI, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections, 116(5): 277 pp.

RASETTI, F. 1967. Lower and Middle Cambrian trilobite faunas from the Taconic Sequence of New York. Smithsonian Miscellaneous Collections, 152(4): 112 pp.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216:395-415.

WESTERGÅRD, A. H. 1936. Paradoxides oelandicus beds of Oland: with the account of a diamond boring through the Cambrian at Mossberga. Sveriges Geologiska Undersökning. Series C, no. 394, Årsbok 30, no. 1: 1-66.

Autres liens :

Plenocaris plena

Reconstitution de Plenocaris plena.

© MARIANNE COLLINS

Taxonomie:

Règne: Arthropodes
Embranchement: Arthropodes
Assignation taxonomique d’ordre supérieur: Clade non classé (groupe souche des arthropodes)
Nom d’espèce: Plenocaris plena
Remarques:

Les affinités de Plenocaris sont peu connues. Le taxon a été attribué à la classe Malacostraca (Whittington, 1974), cependant aucune analyse phylogénétique n’a été effectuée.

Nom du descripteur: Walcott
Date de la description : 1912
Étymologie :

Plenocaris – du latin plenus, « plein »,et caris, « crevette ».

Spécimens types : Holotype – USNM 57700 conservé au Musée national d’histoire naturelle de la Smithsonian Institution, Washington, D.C., États-Unis.
Autres espèces :

Schistes de Burgess et environs : aucune.

Autres dépôts : aucune.

Âge et Sites

Age :
Cambrien moyen, zone à Bathyuriscus-Elrathina (environ 505 millions d’années).
Sites principaux :

Carrières Walcott et Raymond sur la crête aux Fossiles. Carrière Collins sur le mont Stephen.

Histoire de la recherche

Bref historique de la recherche :

Plenocaris a été décrit pour la première fois par Walcott (1912) en tant que Yohoia plena. Whittington (1974) a invalidé l’espèce Y. plena et a établi le genre Plenocaris, laissant Y. tenuis seul au sein de Yohoia.

Description

Morphologie :

Le corps de Plenocaris est allongé et comporte une région céphalique, 13 segments corporels et un telson en forme de pagaie. La tête porte une paire d’antennes simples. Les segments du tronc, du deuxième au quatrième inclusivement, sont dotés d’une paire d’appendices uniramés assez allongés, tandis que les autres segments sont dépourvus de tout appendice. Une carapace est reliée de manière assez lâche au corps; elle couvre les faces dorsales et latérales de la région céphalique et la portion antérieure du tronc.

Abondance :

Plenocaris compte pour une très faible proportion (0,2 %) des spécimens de la carrière Walcott (Caron et Jackson, 2008). Il est extrêmement rare partout ailleurs.

Taille maximum :
17 mm

Écologie

Mode de vie : Arthropodes
Mode d'alimentation : Arthropodes
Interprétations écologiques :

Certains spécimens ont été conservés avec l’intestin plein de sédiments, ce qui suggère une fréquentation du fond marin (benthos) et un régime alimentaire dépositivore. En l’absence d’appendices natatoires, l’animal devait nécessairement se servir de son tronc allongé et de sa grande queue lobée pour se propulser et se diriger dans l’eau.

Références

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WHITTINGTON, H. B. 1974. Yohoia Walcott and Plenocaris n. gen. arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Geological Survey of Canada Bulletin, 231: 1-27.

Autres liens :

Aucun