Home > Isoxys acutangulus
3D animation of Isoxys carinatus.
Animation by Phlesch Bubble © Royal Ontario Museum
3D model of Isoxys carinatus.
Animation by Phlesch Bubble © Royal Ontario Museum
Isoxys acutangulus (ROM 57898). Specimen with eyes and frontal appendages. Specimen length = 25 mm. Specimen dry – polarized light (both images). Raymond Quarry.
© Royal Ontario Museum. Photos: Jean-Bernard Caron
Isoxys acutangulus (ROM 57900). Specimen with eyes, frontal appendages and gut diverticulae. Specimen length = 30 mm. Specimen dry – direct light (left), wet – polarized light (right). Raymond Quarry.
© Royal Ontario Museum. Photos: Jean-Bernard Caron
Isoxys longissimus (ROM 57910) – Part and counterpart. Single valve preserved laterally with burrows. Specimen length = 62 mm. Specimen dry – polarized light. Tuzoia beds on Fossil Ridge.
© Royal Ontario Museum. Photos: Jean-Bernard Caron
Isoxys acutangulus (ROM 57912) – Part and counterpart (bottom right). Specimen with eyes, frontal appendages and phosphatized gut diverticulae (see close up, top right). Specimen length = 23 mm. Specimen dry – direct light (top left), coated with ammonium chloride sublimate to show details (top right), wet – direct light (bottom images). Raymond Quarry.
© Royal Ontario Museum. Photos: Jean-Bernard Caron
Isoxys longissimus (USNM 189170) – Holotype. Individual showing a single valve preserved laterally. Specimen length = 116 mm. Specimen wet – polarized light. Walcott Quarry.
© Smithsonian Institution – National Museum of Natural History. Photo: Jean-Bernard Caron
Isoxys acutangulus (USNM 189181). Individual showing the two valves preserved.
© Smithsonian Institution – National Museum of Natural History. Photo: Jean-Bernard Caron
Isoxys acutangulus (USNM 56521) – Syntype (and probable lectotype). Plate 2, figure 5 of Walcott 1908, originally described as Anomalocaris? acutangulus (left). A single valve preserved sideways. Specimen length = 25 mm. Specimen dry – direct light (middle), dry – polarized light (right). Trilobite Beds on Mount Stephen.
© Smithsonian Institution – National Museum of Natural History. Photo: Jean-Bernard Caron
The affinity of Isoxys is uncertain because for a long time it was known only from empty carapaces. Recent descriptions of soft parts show that the frontal appendage is similar to that of some megacheiran, or “great appendage,” taxa such as Leanchoilia, Alalcomenaeus, and Yohoia (Vannier et al., 2009; García-Bellido et al., 2009a). The affinity of Megacheira as a whole is uncertain, but it has been suggested that they either sit within the stem-lineage to the euarthropods (Budd, 2002) or they are stem-lineage chelicerates (Chen et al., 2004; Edgecombe, 2010).
Isoxys – from the Greek isos, “equal,” and xystos, “smooth surface”; thus referring to the pair of smooth valves.
acutangulus – from the Latin acutus, “sharp, pointed,” and angulus, “angle”; thus referring to the acute angle of the cardinal spines.
Burgess Shale and vicinity: I. longissimus from Walcott, Raymond and Collins Quarries on Fossil Ridge.
Other deposits: I. chilhoweanus from the Chilhowee Group, Tennessee, USA; I. auritus, I. paradoxus and I. curvirostratus from the Maotianshan Shale of China; I. bispinatus from the Shuijingtuo Formation, Hubei, China; I. wudingensis from the Guanshan fauna of China; I. communis and I. glaessneri from the Emu Bay Shale of Australia; I. volucris from the Buen Formation, Sirius Passet in Greenland; I. carbonelli from the Sierro Morena of Spain, and I. zhurensis from the Profallotaspis jakutensis Zone of Western Siberia. Undescribed species from Canada; Mount Cap Formation in the Mackenzie Mountains, Northwest Territories and the Eager Formation near Cranbrook. Other undescribed species in the Kaili Formation, Guizhou Province, China and the Kinzers Formation, Pennsylvania, USA. See references in Briggs et al., 2008; García-Bellido et al., 2009a,b; Stein et al., 2010; Vannier and Chen, 2000.
The Walcott, Raymond and Collins Quarries on Fossil Ridge. Additional localities are known on Mount Field, Mount Stephen – Tulip Beds (S7) and the Trilobite Beds, and near Stanley Glacier.
Walcott gave the name Isoxys to specimens from the lower Cambrian Chilhowee Group of Tennessee, USA, in 1890. He then later designated the first species from the Trilobite Beds on Mount Stephen, Anomalocaris? acutangulus (Walcott, 1908), although he placed it erroneously in the genus Anomalocaris. Simonetta and Delle Cave (1975) renamed it Isoxys acutangulus and discovered a second Burgess Shale species, I. longissimus. The original designations were based on carapaces only, making research on the ecology and affinity of Isoxys difficult. Soft parts have recently been described from the Burgess Shale taxa (Vannier et al. 2009, García-Bellido et al. 2009a).
The most prominent feature of Isoxys is the non-mineralized carapace, which ranged in length from 1 cm to almost 4 cm, and covered most of the body. It was folded to give two equal hemispherical valves, and had pronounced spines at the front and back. A pair of bulbous, spherical eyes protrudes forward and laterally from under the carapace. They are attached to the head by very short stalks. A pair of frontal appendages that are segmented and non-branching (uniramous) is adjacent to the eyes. The flexible appendages are curved with a serrated outline and five segments in total, including a basal part, three segments with stout outgrowths, and a pointed terminal segment.
The trunk of the body has 13 pairs of evenly spaced appendages that are segmented and branch into two (biramous), with slender, unsegmented walking limbs and large, paddle-like flaps fringed with long setae. The telson has a pair of lateral flaps. A cylindrical gut passes from the head to the ventral terminus of the telson, and is lined by paired, lobate gut glands. I. longissimus is distinguished from I. acutangulus by the presence of extremely long spines and an elongated body shape.
Isoxys is known from hundreds of specimens collected on Fossil Ridge. In the Walcott Quarry, Isoxys acutangulus is relatively common and represents about 0.35% of the community whereas Isoxys longissimus is extremely rare (Caron and Jackson, 2008).
The streamlined body, thin carapace, and the presence of large paddle-shaped flaps in the appendages all suggest that Isoxys was a free-swimming animal. The spines and wide telson would have been use for steering and stability in the water column. A predatory lifestyle is indicated by the large eyes, frontal appendage, and gut glands. Isoxys would have swum just above the sea floor, seeking out prey in the water column and at the sediment-water interface.
BRIGGS, D. E. G., B. S. LIEBERMAN, J. R. HENDRICK, S. L. HALGEDAHL AND R. D. JARRARD. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82: 238-254.
BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.
CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.
CHEN, J. Y., D. WALOSZEK AND A. MAAS. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37: 3-20.
EDGECOMBE, G. D. 2010. Arthropod phylogeny: An overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure & Development, 39: 74-87.
GARCÍA-BELLIDO, D. C., J. VANNIER AND D. COLLINS. 2009a. Soft-part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontologica Polonica, 54: 699-712.
GARCÍA-BELLIDO, D. C., J. R. PATERSON, G. D. EDGECOMBE, J. B. JAGO, J. G. GEHLING AND M. S. Y. LEE. 2009b. The bivavled arthropods Isoxys and Tuzoia with soft-part preservation from the lower Cambrian Emu Bay Shale Lagerstätte (Kangaroo Island, Australia). Palaeontology, 52: 1221-1241.
SIMONETTA, A.M. AND L. DELLE CAVE. 1975. The Cambrian non trilobite arthropods from the Burgess Shale of British Columbia. A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.
STEIN, M., J. S. PEEL, D. J. SIVETER AND M. WILLIAMS. 2010. Isoxys (Arthropoda) with preserved soft anatomy from the Sirius Passet Lagerstätte, lower Cambrian of North Greenland. 2010. Lethaia, 43: 258-265.
VANNIER, J. AND J.-Y. CHEN. 2000. The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia, 35: 107-120.
VANNIER, J., D. C. GARCÍA-BELLIDO, S. X. HU AND A. L. CHEN. 2009. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas. Proceedings of the Royal Society of London Series B, 276: 2567-2574.
WALCOTT, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone. Reports of the U.S. Geological Survey, 10: 509-763.
WALCOTT, C. D. 1908. Mount Stephen rocks and fossils. The Canadian Alpine Journal, 1: 232-248.
WILLIAM, M., D. J. SIVETER AND J. S. PEEL. 1996. Isoxys (Arthropoda) from the early Cambrian Sirius Passet Lagerstätte, North Greenland. Journal of Paleontology, 70: 947-954.
None