Home > Insolicorypha psygma
Insolicorypha psygma (USNM 198712) – Holotype, part and counterpart. Only known specimen showing the purported head (top) surrounded by a dark stain (probably representing decay fluids), setae, and gut trace. Specimen length = 12 mm. Specimen dry – polarized light (both images). Walcott Quarry.
© Smithsonian Institution – National Museum of Natural History. Photos: Jean-Bernard Caron
The single specimen (perhaps incomplete, Eibye-Jacobsen, 2004) of this species is too poorly known to allow detailed studies of its affinities.
Insolicorypha – from the Latin insolitus, “unusual,” and the Greek koryphe, “head,” thus, “unusual head.”
psygma – from the Greek psygma, “fan,” in reference to the fan-like arrangement of the worm’s bristles.
Burgess Shale and vicinity: none.
Other deposits: none.
The Walcott Quarry on Fossil Ridge.
Only a single specimen is known. This was originally interpreted by Conway Morris (1979) as a complete animal with an abnormal head. Eibye-Jacobsen (2004) later suggested that the specimen represented just the rear part of the animal, and that the ragged edge of the torn body wall formed the illusion of a head.
This tiny worm (12 mm long) had at least 19 segments, each bearing a pair of lateral projections called parapodia. On the first and perhaps second segment the parapodia are simple (uniramous), while all the other segments have biramous parapodia (divided into two sections of unequal lengths). In the third segment through to the last segment, parapodia support two main bundles of setae, the notosetae (on the upper branch) and the neurosetae (on the lower branch). The notosetae are short while the neurosetae are much longer. The branch bearing the neurosetae has three (two dorsal) and one ventral cirri (representing sensory of secretory organs) and is much longer. The purported front end of the animal has an elongate projection (prostomium) divided into two main sections.
Only a single specimen of Insolicorypha is known and comes from the Walcott Quarry.
Insolicorypha probably had a similar mode of life to modern swimming annelids which also have sensory cirri, but the rarity of this species makes it impossible to conclude exactly how the animal fed. The fans of bristles are clear adaptations to swimming, which may contribute to the organism’s rarity in the Burgess Shale, which primarily preserves bottom-dwelling species.
CONWAY MORRIS, S. 1979. Middle Cambrian Polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 285: 227-274.
EIBYE-JACOBSEN, D. 2004. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia, 37: 317-335.
None