The Burgess Shale

Worthenella cambria

Worthenella cambria (USNM 57643) – Holotype, part and counterpart. Left, plate 22 of Walcott (1911), showing a retouched image of the original specimen described (figure 2) together with other “worms.” Right, images of the same specimen. Specimen length = 60 mm. Specimen wet – direct light (left column), dry – polarized light (right column). Walcott Quarry.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Class: Unranked clade (stem group arthropods)
Remarks:

This animal is related to arthropods, but its systematic status within this group is unknown (Briggs and Conway Morris, 1986).

Species name: Worthenella cambria
Described by: Walcott
Description date: 1911
Etymology:

Worthenella – Possibly after the American palaeontologist Amos Henry Worthen, who died in 1888, just as Walcott’s career was taking off.

cambria – from the Welsh Cambria meaning Wales, in reference to the age of the fossil.

Type Specimens: Holotype –USNM57643 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none

Other deposits: none

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Worthenella was first described by Walcott from a single specimen in a 1911 monograph dealing with various Burgess Shale worms. Walcott interpreted this animal as a polychaete annelid (or bristle worm), in the same family as the animal Wiwaxia (which is now interpreted as a primitive mollusc). However, this interpretation was questioned (Conway Morris, 1979), and the affinities of Worthenella have remained difficult to establish because this singular fossil is too poorly known (Briggs and Conway Morris, 1986).

Description:

Morphology:

The animal is elongate with a small head and bears at least 46 segments of similar dimensions. Appendages or tentacles are present beneath the head, but their preservation is poor and it is difficult to know their precise nature and arrangement. The anterior 34 segments seem to bear filamentous branches on their ventral sides, with the following 8 segments equipped with longer appendages. The gut is straight and the anus is terminal.

Abundance:

This animal is known from a single specimen.

Maximum Size:
60 mm

Ecology:

Ecological Interpretations:

Not enough is known about this organism to interpret its ecology.

References:

BRIGGS, D. E. G. AND S. CONWAY MORRIS. 1986. Problematica from the Middle Cambrian Burgess Shale of British Columbia, p. 167-183. In A. Hoffman and M. H. Nitecki (eds.), Problematic fossil taxa (Oxford Monographs on Geology and Geophysics No. 5). Oxford University Press & Clarendon Press, New York.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

Other Links:

None

Thelxiope palaeothalassia

Thelxiope palaeothalassia (GSC 74990). Articulated specimen (close up to the right), associated with several individuals of the arthropod Canadaspis perfecta. Specimen length = 29 mm. Specimen dry – polarized light. Walcott Quarry.

© GEOLOGICAL SURVEY OF CANADA. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Class: Unranked clade (stem group arthropods)
Remarks:

The affinity of Thelxiope has not been considered in detail because the appendages are unknown.

Species name: Thelxiope palaeothalassia
Described by: Simonetta and Delle Cave
Description date: 1975
Etymology:

Thelxiope – from the Greek thelx meaning “enchanting,” and ops, meaning “voice,” referring to the muse-like appearance of the animal.

palaeothalassia – from the Greek palaios, meaning “ancient,” and thalassios, meaning “marine,” in reference to the age and environment where the animal lived.

Type Specimens: Holotype –USNM144914 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Walcott (1912) figured two fragmentary specimens as Mollisoniarara; these were first reinterpreted by Simonetta (1964) within a new genus Parahabelia rara, along with three additional specimens that he thought were related. However, Simonetta and Delle Cave (1975) considered that among those five specimens, the two originally figured by Walcott as M? rara had to be synonymized with M. symmetrica and the other three had to be placed within a new genus and species called Thelxiope palaeothalassia, a name in use since then.

Description:

Morphology:

This species has a relatively wide cephalon and seven segments and resembles Habelia in overall shape. However, in T. palaeothalassia, each segment bears a single prominent spine pointing dorsally. The last segment is armed with a very long pointed telson.

Abundance:

Thelxiope is extremely rare, with only four known specimens.

Maximum Size:
43 mm

Ecology:

Ecological Interpretations:

Thelxiope is too poorly known to allow detailed studies of its ecology.

References:

SIMONETTA, A. M. 1964. Osservazioni sugli arthropodi non trilobiti della “Burgess Shale” (Cambriano medio). Monitore Zoologico Italiano, 72 (3-4: III Contributo: I Generi MolariaHabeliaEmeraldellaParahabelia (Nov.) Emeraldoides (Nov.): 215-231.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.

WALCOTT, C. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6):145-228.

Other Links:

None

Tegopelte gigas

Tegopelte gigas (USNM 189201) – Holotype. Complete specimen showing antennae and appendages partially prepared near the back. Specimen length = 270 mm. Specimen dry – direct (top) and polarized light (bottom). Walcott Quarry.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Class: Unranked clade (stem group arthropods)
Remarks:

Tegopelte is usually compared to the soft-bodied “trilobites” such as Naraoia and Saperion, but the exact relationships of these taxa to the mineralized trilobites is uncertain (Whittington, 1977). The tegopeltids and other trilobite-like arthropods are sometimes referred to as Trilobitoidea, which when grouped together with the trilobites form the Lamellipedians (Hou and Bergström, 1997; Wills et al., 1998; Edgecombe and Ramsköld, 1999). This group has been variously placed in the upper stem lineage of the arthropods (Budd, 2002), or in the stem lineage of either the mandibulates (Scholtz and Edgecombe, 2006) or the chelicerates (Cotton and Braddy, 2004).

Species name: Tegopelte gigas
Described by: Simonetta and Delle Cave
Description date: 1975
Etymology:

Tegopelte – from the Greek tegos, “tile,” and pelte, “leather-shield,” referring to the shape of the dorsal body covering.

gigas – from the Greek gigas, “giant,” referring to the large size of the animal.

Type Specimens: Holotype –USNM189201 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Tegopelte was first described by Simonetta and Delle Cave (1975) to include only two relatively large specimens. This original description showed Tegopelte to have a cephalon with six or seven pairs of walking appendages, a thorax of four tergites each bearing five appendages, and a tail segment with ten appendages. Whittington (1985) re-examined the animal, reducing the number of head appendages to three, and describing the thorax as having only three tergites with three appendages each. The tail in Whittington’s (1985) reconstruction had two segments with a total of 20 appendages. Later re-examination by Ramsköld et al. (1996) suggested that the body has no tergites, but instead consists of an undivided dorsal shield. Tegopelte has been grouped together with the Chengjiang taxon Saperion to form the Tegopeltidae (Ramsköld et al., 1996; Hou and Bergström, 1997), a clade later confirmed by cladistic analysis (Edgecombe and Ramsköld, 1999; Hendricks and Lieberman, 2008).

Description:

Morphology:

The dorsal morphology of Tegopelte consists of an elongated oval-shaped dorsal shield that is featureless and undivided. The length of the two known specimens is 25.7 cm and 27.0 cm, making it one of the largest arthropods in the Burgess Shale. The ventral morphology consists of a pair of multi-segmented antennae at the front of the body, followed by a series of identical limbs that are segmented and branch into two (biramous), totaling approximately 33 along the entire body. The biramous limbs have a walking branch made up of six segments with a pair of spines on the terminal segment, and a filamentous branch where numerous elongated oval blades attach to a central shaft. The biramous limbs decrease in size towards the posterior end of the body.

Abundance:

Tegopelte is extremely rare, with only two known specimens.

Maximum Size:
270 mm

Ecology:

Ecological Interpretations:

Tegopelte probably spent much of its time walking on the seafloor, based on the presence of many appendages. It used the segmented branches of its biramous appendages for walking, and it is likely that the filamentous branches were used for oxygen exchange, and to propel the animal through the water during short bursts of swimming. The antennae would have been used to sense the environment. The lack of eyes, gut glands and feeding appendages make it difficult to allocate a feeding strategy to Tegopelte.

References:

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216: 395-415.

EDGECOMBE, G. D. and L. RAMSKÖLD. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Jounral of Paleontology, 73: 263-287.

HENDRICKS, J. R. AND B. S. LIEBERMAN. 2008. New phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. Journal of Paleontology, 83: 585-594.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

RAMSKÖLD, L., J. CHEN, G. D. EDGECOMBE AND G. ZHOU. 1996. Preservational folds simulating tergite junctions in tegopeltid and naraoiid arthropods. Lethaia, 29: 15-20.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. . Palaeontographia Italica, 69: 1-37.

WHITTINGTON, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, B, 280: 409-443.

WHITTINGTON, H. B. 1985. Tegopelte gigas, a second soft-bodied trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology, 59: 1251-1274.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

Other Links:

None

Stephenoscolex argutus

Stephenoscolex argutus (USNM 83936b) – Holotype. Specimen showing the head (top left) followed by the trunk, which is lined by narrow parapodia and setae. Filamentous structures around the body probably represent cyanobacteria. Specimen length = 32 mm. Specimen dry – direct light (left) and wet – direct light (right). Walcott Quarry.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Class: Unranked clade (stem group polychaetes)
Remarks:

Stephenoscolex bears some resemblance to modern polychaetes but cannot be placed in any extant group (Conway Morris, 1979) suggesting a position as a stem-group polychaete (Eibye-Jacobsen, 2004).

Species name: Stephenoscolex argutus
Described by: Conway Morris
Description date: 1979
Etymology:

Stephenoscolex – from the Greek scolex, “worm,” and Mount Stephen. Mount Stephen (3,199 m) was named after George Stephen (1829 – 1921), first president of the Canadian Pacific Railway.

argutus – from the Latin argutus, “bright,” in recognition of the shininess of the fossils.

Type Specimens: USNM – 83936b in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. Paratype –ROM32574 in the Royal Ontario Museum, Toronto, ON, Canada.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Walcott (1911; 1931) included the holotype of this species within Canadia dubia, which Simon Conway Morris, in his 1979 re-examination of Burgess Shale polychaetes, reclassified as Stephenoscolex. Conway Morris found a further partial specimen in the ROMcollections, and further specimens have since been recovered by the ROMbelow the Walcott Quarry. However, this additional material awaits detailed study; since the published description rests on two specimens, it must be treated with caution (Eibye-Jacobsen, 2004).

Description:

Morphology:

The worm has a slim body, around 1 mm wide, reaching around 3 cm in length. Its head bears two pairs of appendages extending from its front and sides. It has around forty further segments, each of which bear simple lateral projections (uniramous) called parapodia. The parapodia each bear around fifteen short and simple setae. Cirri and branchiae are absent.

Abundance:

Stephenoscolex was considered one of the rarest annelids from the Burgess Shale but additional material has now been collected from the Walcott Quarry representing 0.28% of the specimens counted in the community (Caron and Jackson, 2008).

Maximum Size:
32 mm

Ecology:

Ecological Interpretations:

There is little that can confidently be stated about the life habit of this animal, but the pattern of spines suggests that it crept or swum over or in the sediment.

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. 1979. Middle Cambrian polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 285(1007): 227-274.

EIBYE-JACOBSEN, D. 2004. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia, 37(3): 317-335.

WALCOTT, C. D. 1911. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(2): 109-144.

WALCOTT, C. D. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85(3): 1-46.

Other Links:

None

Skania fragilis

Skania fragilis (ROM 60752) – Part and counterpart (first and second rows). Complete specimen showing antennae. Specimen length = 11 mm. Specimen dry – polarized light (left column) and wet (right column). Raymond Quarry.

© ROYAL ONTARIO MUSEUM. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Class: Unranked clade (stem group arthropods)
Remarks:

The affinity of Skania is controversial, but most agree it is related to the arthropods. It is similar to Primicaris (Lin et al., 2006; Zhang et al., 2007), and both taxa have been compared to soft-bodied trilobites like Naraoia (Walcott, 1931; Zhang et al., 2007; Hou and Bergström, 1997). Other researchers suggest these taxa are related to the enigmatic Ediacaran taxon Parvancorina (Delle Cave and Simonetta, 1975; Gehling, 1991; Conway Morris, 1993; Simonetta and Insom, 1993), with all three taxa forming a clade in sister group position relative to the trilobites (Lin et al., 2006).

Species name: Skania fragilis
Described by: Walcott
Description date: 1931
Etymology:

Skania – from Skana, the name of a glacier near Mount Robson, British Columbia, Canada.

fragilis – from the Latin fragilis, “brittle,” referring to the delicate nature and small size of the animal.

Type Specimens: Holotype –USNM83950 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: Skania sundbergi Lin et al. 2006 from the Kaili Formation, China.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge.

History of Research:

Brief history of research:

Skania fragilis was first described by Walcott (1931) in a posthumous monograph published by his assistant Charles Resser. Resser compared Skania to the trilobites and Naraoia. However in a redescription by Delle Cave and Simonetta (1975), it was suggested instead that Skania was closely related to the Ediacaran taxon Parvancorina minchami Glaessner 1958. This affinity has been much discussed (Gehling, 1991; Conway Morris, 1993; Simonetta and Insom, 1993; Lin et al. 2006), and Skania has also been compared extensively with Primicaris Zhang et al. 2003. Skania and Primicaris have also been interpreted as juveniles (protaspides) of naraoiids (Hou and Bergström, 1997).

Description:

Morphology:

Skania has a single, undifferentiated, soft dorsal shield that is roughly kite-shaped. The dorsal shield is rounded at the front of the head, and tapers towards the posterior of the body, ending in a pair of short margin spines at the posterior end. At the point of maximum width there are sharp genal spines directed posteriorly. The posterior margin of the head is delineated by a narrow rim that is strongly arched forward, with the cephalic region occupying one-quarter of the exoskeletal length. A midgut is preserved in the axial region of the body trunk. Appendages are poorly preserved but consist of a pair of anterior antennae and ten or more paired body limbs.

Abundance:

Skania fragilis is known from fewer than 40 specimens in total.

Maximum Size:
17 mm

Ecology:

Ecological Interpretations:

The ecology of Skania is poorly known because the details of its morphology remain enigmatic. The form of the appendages is assumed to be biramous based on the overall similarity with Primicaris, which possesses biramous appendages, meaning that both animals may have walked on the seafloor, using their filamentous appendages for oxygen exchange and occasional swimming. Skania lacks eyes, so it likely used its antennae to sense the environment. The feeding strategy is unknown.

References:

CONWAY MORRIS, S. 1993. Ediacaran-like fossil in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36: 593-635.

DELLE CAVE, L. AND A. M. SIMONETTA. 1975. Notes on the morphology and taxonomic position of Aysheaia (Onycophora?) and of Skania (undetermined phylum). Monitore Zoologico Italiano New Series, 9: 67-81.

GEHLING, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree, p. 181-223. In B. P. Radhakrishna (ed.), The world of Martin F. Glaessner. Geological Society of India, Bangalore.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

LIN, J., S. M. GON III, J. G. GEHLING, L. E. BABCOCK, Y. ZHAO, X. ZHANG, S. HU, J. YUAN M. YU AND J. PENG. 2006. A Parvancorina-like arthropod from the Cambrian of South China. Historical Biology, 18: 33-45.

SIMONETTA, A. M. AND E. INSOM. 1993. New animals from the Burgess Shale (Middle Cambrian) and their possible significance for the understanding of the Bilateria. Bolletino di Zoologia, 60: 97-107.

WALCOTT, C. D. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85: 1-46.

ZHANG, X., D. SHU AND D. H. ERWIN. 2007. Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. Palaeontological Society Memoir, 68: 1-52.

Other Links:

None

Scolecofurca rara

Scolecofurca rara (GSC 45331) – Holotype (part and counterpart). Only known specimen of the species showing the pair tentacles in direct light (anterior to the right). Specimen length = 65 mm. Specimen wet – direct light (top), dry – polarized light (middle and bottom). Raymond Quarry.

© GEOLOGICAL SURVEY OF CANADA. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Class: Unranked clade (stem group priapulids)
Remarks:

Scolecofurca belongs to the priapulid worm stem group (Harvey et al., 2010; Wills, 1998).

Species name: Scolecofurca rara
Described by: Conway Morris
Description date: 1977
Etymology:

Scolecofurca – from the Greek skolex, meaning “worm,” and the Latin furca, “fork,” in reference to the fork-like anterior of this worm.

rara – from the Latin rarus, “infrequent,” in reference to the rarity of the species.

Type Specimens: Holotype – GSC45331 in the Geological Survey of Canada, Ottawa, Canada.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Raymond Quarry on Fossil Ridge.

History of Research:

Brief history of research:

This worm was described by Conway Morris in 1977 as a possible primitive priapulid. Later analyses showed that S. rara belongs to the priapulid stem group (Harvey et al., 2010; Wills, 1998).

Description:

Morphology:

Scolecofurca is known from a single incomplete specimen, which is estimated to have reached nine centimeters in total length. Like other priapulids, the body is divided into a proboscis and a trunk. The proboscis is fringed with small extensions called papillae, and tipped with a pair of conspicuous tentacles giving the appearance of a two-pronged fork. The trunk is annulated and the gut appears to be represented by a simple tube. Contrary to all the other species of priapulids from the Burgess Shale, this form does not have spines or hooks on the proboscis or body.

Abundance:

This species is known from a single specimen.

Maximum Size:
90 mm

Ecology:

Ecological Interpretations:

The general body-shape and presence of a proboscis suggests Scolecofurca was a burrower. The tentacles might have had a sensory function rather than being used for prey manipulation, but the mode of feeding of this species is unknown.

References:

CONWAY MORRIS, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology, 20: 1-95.

HARVEY, T. H. P., X. DONG AND P. C. J. DONOGHUE. 2010. Are palaeoscolecids ancestral ecdysozoans? Evolution & Development, 12(2): 177-200.

WILLS, M. A. 1998. Cambrian and Recent disparity: the picture from priapulids. Paleobiology, 24(2): 177-199.

Other Links:

None

Insolicorypha psygma

Insolicorypha psygma (USNM 198712) – Holotype, part and counterpart. Only known specimen showing the purported head (top) surrounded by a dark stain (probably representing decay fluids), setae, and gut trace. Specimen length = 12 mm. Specimen dry – polarized light (both images). Walcott Quarry.

© Smithsonian Institution – National Museum of Natural History. Photos: Jean-Bernard Caron

Taxonomy:

Class: Unranked clade (stem group polychaetes)
Remarks:

The single specimen (perhaps incomplete, Eibye-Jacobsen, 2004) of this species is too poorly known to allow detailed studies of its affinities.

Species name: Insolicorypha psygma
Described by: Conway Morris
Description date: 1979
Etymology:

Insolicorypha – from the Latin insolitus, “unusual,” and the Greek koryphe, “head,” thus, “unusual head.”

psygma – from the Greek psygma, “fan,” in reference to the fan-like arrangement of the worm’s bristles.

Type Specimens: Holotype –USNM198667 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Only a single specimen is known. This was originally interpreted by Conway Morris (1979) as a complete animal with an abnormal head. Eibye-Jacobsen (2004) later suggested that the specimen represented just the rear part of the animal, and that the ragged edge of the torn body wall formed the illusion of a head.

Description:

Morphology:

This tiny worm (12 mm long) had at least 19 segments, each bearing a pair of lateral projections called parapodia. On the first and perhaps second segment the parapodia are simple (uniramous), while all the other segments have biramous parapodia (divided into two sections of unequal lengths). In the third segment through to the last segment, parapodia support two main bundles of setae, the notosetae (on the upper branch) and the neurosetae (on the lower branch). The notosetae are short while the neurosetae are much longer. The branch bearing the neurosetae has three (two dorsal) and one ventral cirri (representing sensory of secretory organs) and is much longer. The purported front end of the animal has an elongate projection (prostomium) divided into two main sections.

Abundance:

Only a single specimen of Insolicorypha is known and comes from the Walcott Quarry.

Maximum Size:
12 mm

Ecology:

Ecological Interpretations:

Insolicorypha probably had a similar mode of life to modern swimming annelids which also have sensory cirri, but the rarity of this species makes it impossible to conclude exactly how the animal fed. The fans of bristles are clear adaptations to swimming, which may contribute to the organism’s rarity in the Burgess Shale, which primarily preserves bottom-dwelling species.

References:

CONWAY MORRIS, S. 1979. Middle Cambrian Polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 285: 227-274.

EIBYE-JACOBSEN, D. 2004. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia, 37: 317-335.

Other Links:

None

Hanburia gloriosa

Hanburia gloriosa (ROM 48468). Complete individual (external mold). Specimen length = 26 mm Specimen coated with ammonium chloride sublimate to show details. Trilobite Beds on Mount Stephen.

© Royal Ontario Museum. Photo: Jean-Bernard Caron

Taxonomy:

Class: Trilobita (Order: Corynexochida?)
Remarks:

Trilobites are extinct euarthropods, probably stem lineage representatives of the Mandibulata, which includes crustaceans, myriapods, and hexapods (Scholtz and Edgecombe, 2006).

Species name: Hanburia gloriosa
Described by: Walcott
Description date: 1916
Etymology:

Hanburia – unspecified, but probably after Hanbury Peak or Hanbury Glacier in the Canadian Rockies, in turn named for David T. Hanbury (1864-1910), a British explorer of the Canadian Northwest Territories.

gloriosa – from the Latin gloriosus, meaning “glorious” or “boastful,” perhaps in allusion to the unusual cephalic morphology of this rare species.

Type Specimens: Lectotype –USNM61724, in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Glossopleura to Bathyuriscus-Elrathina Zones (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge. The Tulip Beds (S7) and smaller localities on Mount Stephen.

History of Research:

Brief history of research:

Walcott’s three original specimens of Hanburia gloriosa were found over the course of five years of quarrying the Phyllopod Bed on Fossil Ridge (Walcott, 1916); two more from this locality are also in theUSNMcollections. A singleUSNMspecimen was later found by Charles Resser, supposedly from the “Ogygopsis shale” on Mount Stephen (Rasetti, 1951), but this is almost certainly an error. Harry Whittington reassessed this odd trilobite in 1998.

Description:

Morphology:

Hard parts: the few known specimens of Hanburia gloriosa range in length from 4 mm (for a juvenile stage) to 35 mm. Dorsal shields are broadly ovate to subcircular in outline and all specimens are considerably flattened by compression of the thin exoskeleton. The cephalon is semicircular with a weak, shallow border furrow along the posterior and lateral margins, fading out towards the anterior corners of the glabella. The glabella in small specimens expands forwards and shows two pairs of faint bulbous lateral lobes; in larger specimens, the glabella is parallel-sided and the lobes are subdued. There are no apparent eyes located laterally on the cephalon, and there is no sign of dorsal facial suture. In these two features, Hanburia is unique among the non-agnostoid trilobites of the Burgess Shale.

Whittington (1998) has suggested that the facial suture might run along the outside edge of the cephalon, or ventrally, crossing to the dorsal side only at the genal angles, which in all specimens appear to be rounded. Larger individuals show six or seven segments in the comparatively short thorax, and a single known (presumed) juvenile stage shows four; the distal tips of the pleurae are rounded. The semicircular pygidium lacks a defined border, and is approximately the same width and length as the cephalon. Seven or eight axial rings and a terminal piece make up the pygidial axis, which ends short of the posterior margin. Eight or nine pairs of well-marked pygidial pleurae radiate out and back from the axis.

Unmineralized anatomy: not known

Abundance:

Very rare in all the Burgess Shale localities.

Maximum Size:
35 mm

Ecology:

Ecological Interpretations:

Due to its unusual cephalic morphology (i.e., no dorsal sutures or lateral compound eyes), rarity, and unique occurrence only in the Burgess Shale, Hanburia gloriosa remains an ecological enigma. Other “blind” Cambrian trilobites with somewhat similar morphologies have been interpreted as inhabiting deeper waters, perhaps below the photic zone (Whittington, 1998).

References:

RASETTI, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections, 116 (5): 1-277.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216: 395-415.

WALCOTT, C. D. 1916. Smithsonian Miscellaneous Collections, 64(3): 157-258.

WHITTINGTON, H. B. 1998. Hanburia gloriosa: rare trilobite from the Middle Cambrian, Stephen Formation, British Columbia, Canada. Journal of Paleontology, 72: 673-677.

Other Links:

None

Portalia mira

Portalia mira (USNM 83927) – Holotype, part and counterpart. Complete specimen preserved with Mackenzia costalis. Anterior possible to the right. Specimen length = 100 mm. Specimen dry – polarized light. Walcott Quarry.

© SMITHSONIAN INSTITUTION – NATIONAL MUSEUM OF NATURAL HISTORY. PHOTOS: JEAN-BERNARD CARON

Taxonomy:

Class: Non applicable
Remarks:

Portalia is regarded as a problematic organism awaiting a full redescription (Briggs and Conway Morris, 1986).

Species name: Portalia mira
Described by: Walcott
Description date: 1918
Etymology:

Portalia – from Portal Peak (2,911 m), north of the Burgess Shale in Banff National Park.

mira – from the Latin mirus, “wonderful,” in reference to the morphology of the animal.

Type Specimens: Holotype –USNM83927 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

The only known specimen of Portalia was first illustrated by Walcott in a brief communication published in 1918 and refigured in a posthumous publication (Walcott, 1931). Walcott interpreted this fossil as a holothurian, a member of a group of echinoderms better known as sea-cucumbers. Madsen (1957) suggested Portalia might be a primitive sponge, but Durham (1974) thought that the holothurian affinity could not be rejected without further studies (see also Conway Morris, 1979). The relationships of Portalia remain difficult to establish (Briggs and Conway Morris, 1986).

Description:

Morphology:

The body of Portalia is sausage-shaped and the most distinctive features are a series of elongate tentacle-like structures covering the entire surface. These structures tend to split into several simple branches. A central strand within the body has been interpreted as part of the gut and the head has been tentatively identified as a darker indistinct area at one end.

Abundance:

Portalia is known from a single specimen.

Maximum Size:
100 mm

Ecology:

Ecological Interpretations:

Not enough is known about this organism to interpret its feeding strategy.

References:

BRIGGS, D. E. G. AND S. CONWAY MORRIS. 1986. Problematica from the Middle Cambrian Burgess Shale of British Columbia, p. 167-183. In A. Hoffman and M. H. Nitecki (eds.), Problematic fossil taxa (Oxford Monographs on Geology and Geophysics No. 5). Oxford University Press & Clarendon Press, New York.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

MADSEN, F. J. 1957. On Walcott’s supposed Cambrian holothurians. Journal of Paleontology, 31(1): 281-286.

WALCOTT, C. 1918. Geological explorations in the Canadian Rockies. From “Explorations and Field-Work of the Smithsonian Institution in 1917”. Smithsonian Miscellaneous Collections, 68: 4-20.

WALCOTT, C. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85(3): 1-46.

Other Links:

None

Pollingeria grandis

Pollingeria grandis (GSC 8362). Slab with several specimens. Specimen length (largest) = 15 mm. Specimen dry – polarized light. Walcott Quarry.

© GEOLOGICAL SURVEY OF CANADA. PHOTO: JEAN-BERNARD CARON

Taxonomy:

Class: Non applicable
Remarks:

Pollingeria is one of the least understood Burgess Shale organisms, and its systematic status is unknown (Briggs and Conway Morris, 1986).

Species name: Pollingeria grandis
Described by: Walcott
Description date: 1911
Etymology:

Pollingeria – from Mount Pollinger (2,816 m), northwest of the Burgess Shale. The name was given after Joseph Pollinger (1873-1943).

grandis – from the Latin grandis, “big, large,” in reference to the purported large size of the fossils.

Type Specimens: Syntypes –USNM57639-57641 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Period:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge and smaller sites on Mount Field and Mount Stephen.

History of Research:

Brief history of research:

Pollingeria was first described by Walcott in a 1911 monograph dealing with various Burgess Shale worms. Walcott interpreted these fossils as the individual scales of a larger organism resembling Wiwaxia. However, this interpretation was doubted (Conway Morris, 1979), and firmly rejected after the restudy of Wiwaxia (Conway Morris, 1985). The affinities of Pollingeria have remained difficult to establish (Briggs and Conway Morris, 1986).

Description:

Morphology:

The shape of this fossil is ovoid but variable in details and most individuals range from 10 to 15 mm in length. A distinctive feature is a series of narrow tubular elements that are darker and often slightly raised; these are twisted and contorted and do not appear to be parts of a gut.

Abundance:

Pollingeria is locally very abundant with hundreds of specimens on some bedding surfaces. In the Walcott Quarry this species represents 5.83% of the specimens counted in the community (Caron and Jackson, 2008).

Maximum Size:
15 mm

Ecology:

Ecological Interpretations:

Not enough is known about this organism to interpret its ecology.

References:

BRIGGS, D. E. G. AND S. CONWAY MORRIS. 1986. Problematica from the Middle Cambrian Burgess Shale of British Columbia, p. 167-183. In A. Hoffman and M. H. Nitecki (eds.), Problematic fossil taxa (Oxford Monographs on Geology and Geophysics No. 5). Oxford University Press & Clarendon Press, New York.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

CONWAY MORRIS, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, Series B, 307:507-582.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

Other Links:

None