The Burgess Shale

Pakucaris apatis

Pakucaris apatis, holotype ROMIP 65739

Taxonomy:

Kingdom: Swimmers
Phylum: Swimmers
Higher Taxonomic assignment: Hymenocarines, Family: Odaraiidae
Species name: Pakucaris apatis
Remarks:

Hymenocarines were early arthropods with bivalved carapaces and mandibles, forming the bulk of the first mandibulates (represented today by myriapods, crustaceans and insects) (Aria and Caron 2017; Vannier et al. 2018). In many hymenocarines, including Pakucaris, determining the exact number and types of appendages in their head remains difficult, which hinders a detailed understanding of the evolutionary relationships inside this group. Pakucaris most probably belongs to the family Odaraiidae, a group of hymenocarines with highly multisegmented bodies, reduced or absent antennae and highly multisegmented legs.

Described by: Izquierdo-López & Caron
Description date: 2021
Etymology:

Pakucaris – from the Japanese onomatopoeia paku, suggestive of ‘eating’, related to the video game character Pac-Man, due to the naked eye resemblance of the carapace and shield of Pakucaris to the shape of the character. Latin caris, meaning “crab” or “shrimp”, and

apatis – from the goddess of deception in Greek mythology Apate, in reference to the resemblance of Pakucaris to a trilobite.

Type Specimens: Holotype ROMIP65739
Other species:

Burgess Shale and vicinity: None
Other deposits: None

Age & Localities:

Age:
Middle Cambrian, Wuliuan Stage, upper part of the Burgess Shale Formation (around 507 million years old)
Principal localities:

Marble Canyon, Tokumm Creek

History of Research:

Brief history of research:

The holotype of Pakucaris apatis was first discovered during the 2012 expedition to the Marble Canyon site of the Burgess Shale. A few other specimens were discovered during the following 2014 and 2016 expeditions and classified as “New arthropod E” (Nanglu et al. 2020). The 2018 expedition at the Tokumm Creek site uncovered one additional specimen. The first description of Pakucaris apatis was published in 2021 in the journal Papers in Paleontology (Izquierdo-López and Caron, 2021). Several other authors have noted the similarity between the shield of Pakucaris and pygidia (O’Flynn et al. 2022). A pygidium is a structure in which the most posterior segments of an arthropod become fused, usually into a shield. The pygidium is typically found in trilobites, but also across many other groups in the Cambrian, suggesting that this structure appeared multiple times independently.

Description:

Morphology:

Pakucaris has two morphotypes: a small one (around 1 cm) with its body subdivided into 30-35 segments, and a larger one (around 2.5 cm), with its body subdivided into 70-80 segments. The carapace of Pakucaris covers up to two-thirds of the total body length. It has a dome-like shape with a small dorsal crest that runs across its entire length. The carapace bends towards the front, extending into a small process (rostrum). Similarly, the lateral sides of the carapace also extend frontally into small lateral processes. The head has one pair of pedunculate eyes, one pair of thin small appendages, and at least one pair of larger segmented antennae. The small thin appendages are not segmented and represent a sensorial organ known as frontal filaments. The first antennae (also termed antennules) have 7 to 8 segments, with each segment bearing a small spine. Each segment of the body bears one pair of limbs, each subdivided into two branches (biramous): a walking leg (endopod) and a paddle-like flap (exopod). The endopod is thin and is subdivided into at least 20-21 segments. The exopod has an ovoid, flattened shape and is as long as half the endopod. The posterior section of the body has a shield-like structure. This shield is formed by the fusion and lateral extensions of the segments. The shield bears around 10 big spines on each of its lateral sides, as well as a series of smaller spines on its posterior side.

Abundance:

Pakucaris is rare, only known from eight specimens from the Marble Canyon and Tokumm Creek sites. The bigger morphotype is only known from one specimen.

Maximum Size:
About 2.5 cm

Ecology:

Life habits: Swimmers
Feeding strategies: Swimmers
Ecological Interpretations:

Pakucaris was probably a nektobenthic animal living close to the benthos (Izquierdo-López and Caron 2021). It may have used its antennae with spines to scrape rocks or other objects and may have also used its paddle-like exopods to create currents and capture organic particles, aided by its antennae and other head appendages. The tail shield (or pygidium) of Pakucaris was most probably a structure to protect against predators. The two morphotypes of Pakucaris may represent different growth stages of males and females, but the number of specimens available to date is too limited to reach a conclusion.

References:

  • ARIA, C. and CARON, J. B. 2017. Burgess Shale fossils illustrate the origin of the mandibulate body plan. Nature, 545: 89–92.
  • IZQUIERDO-LÓPEZ, A. and CARON, J. B. 2021. A Burgess Shale mandibulate arthropod with a pygidium: a case of convergent evolution. Papers in Palaeontology, 7: 1877–1894.
  • NANGLU, K., CARON, J. and GAINES, R. 2020. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology, 46(1): 58–81.
  • O’FLYNN, R. J., WILLIAMS, M., YU, M., HARVEY, T. and LIU, Y. 2022. A new euarthropod with large frontal appendages from the early Cambrian Chengjiang biota. Palaeontologia Electronica, 25(1):a6: 1–21.
  • VANNIER, J., ARIA, C., TAYLOR, R. S. and CARON, J. B. 2018. Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. Royal Society Open Science, 5:172206.
Other Links:

Fibulacaris nereidis

Fibulacaris nereidis, carapace ROMIP 64511

Taxonomy:

Kingdom: Swimmers
Phylum: Swimmers
Higher Taxonomic assignment: Hymenocarines, Family: Odaraiidae
Species name: Fibulacaris nereidis
Remarks:

Hymenocarines were early arthropods with bivalved carapaces and mandibles, forming the bulk of the first mandibulates (represented today by myriapods, crustaceans and insects) (Aria and Caron 2017; Vannier et al. 2018). In many hymenocarines, including Fibulacaris, determining the exact number and types of appendages on their head remains difficult, which hinders a detailed understanding of the evolutionary history of this group. Fibulacaris most probably belongs to the family Odaraiidae, a group of hymenocarines with highly multisegmented bodies, reduced or absent antennae and highly multisegmented legs.

Described by: Izquierdo-López & Caron
Description date: 2019
Etymology:

Fibulacaris – from a “fibula”, a type of brooch, the latin caris, meaning “crab” or “shrimp”

nereidis – from the Greek mythological creatures known as Nereids, the daughters of Nereus, given the similarities of Fibulacaris to the Burgess Shale odaraiid Nereocaris (Legg et al. 2012).

Type Specimens: Holotype ROMIP65380
Other species:

Burgess Shale and vicinity: None
Other deposits: None

Age & Localities:

Age:
Middle Cambrian (Wuliuan Stage), upper part of the Burgess Shale Formation (around 507 million years old)
Principal localities:

Marble Canyon, Tokumm Creek.

History of Research:

Brief history of research:

Several specimens of Fibulacaris nereidis were discovered at the Marble Canyon site in 2014 and nicknamed “epsilon-arthropod” based on the characteristic shape of its carapace. The majority of specimens were discovered at Mount Whymper and Tokumm Creek sites during the expeditions of 2016 and 2018, sometimes referred as “safety-pin”. Its genus and species were later described in 2019 (Izquierdo-López and Caron 2019).

Description:

Morphology:

Fibulacaris is generally small, with most specimens measuring around 1 cm. It has a distinct bivalved carapace enclosing its body laterally, covering up to two-thirds of its entire length. The dorsal side of the carapace is dome-shaped with a small crest that runs across the entire length, and a small spinose process on its posterior side. The frontal side of the carapace bends ventrally into a highly elongated spine, almost as long as the carapace itself. The ventral margins of the carapace are thicker, and end with a small process posteriorly on both sides. One pair of pedunculate eyes protrudes from the notches formed between the carapace and the spine. Other details about its head remain unknown, but antennae are either absent or highly reduced. The anterior side of the body is bent posteriorly, so that the eyes are facing backward. The body is multisegmented, subdivided into 30 segments, with each segment bearing limbs subdivided into two branches (biramous). Its tail has two small appendages shaped like a paddle (caudal rami).

Abundance:

Fibulacaris is rare at the Marble Canyon site, but very abundant (with more than 100 specimens) along Tokumm Creek.

Maximum Size:
About 2 cm.

Ecology:

Life habits: Swimmers
Feeding strategies: Swimmers
Ecological Interpretations:

Fibulacaris was likely a nektobenthic suspension feeder (Izquierdo-López and Caron 2019). Its gut is sometimes preserved as a three-dimensional structure, a type of preservation that has been associated with deposit feeders (Legg and Caron 2014). However, Fibulacaris’ carapace extends through its ventral side, indicating that this arthropod was not able to walk on surfaces and obtain organic material from the sediment, like a deposit feeder. Extant branchiopod crustaceans, such as many water fleas (Cladocera), have carapaces similar to that of Fibulacaris. Using their limbs, they generate small water currents carrying organic particles that pass through their limbs and carapace. Fibulacaris, could have used a similar suspension-feeding strategy. Given that the dorsal side of Fibulacaris was covered by its carapace, and that its eyes were facing towards the back of its body, it has been suggested that it was swimming upside down (Izquierdo-López and Caron 2019), as fairy shrimps do (Anostraca) (Fryer 2006). This way, Fibulacaris would have had capture organic particles falling from the water column, while being protected from predators from its back thanks to the carapace, from its ventral and posterior side thanks to the spine.

References:

  • ARIA, C. and CARON, J. B. 2017. Burgess Shale fossils illustrate the origin of the mandibulate body plan. Nature, 545: 89–92.
  • FRYER, G. 1968. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 254: 221–382.
  • FRYER, G. 2006. The brine shrimp’s tale: a topsy turvy evolutionary fable. Biological Journal of the Linnean Society, 88(3): 377–382.
  • IZQUIERDO-LÓPEZ, A. and CARON, J. B. 2019. A possible case of inverted lifestyle in a new bivalved arthropod from the Burgess Shale. Royal Society Open Science, 6: 191350.
  • IZQUIERDO-LÓPEZ, A. and CARON, J. B. 2021. A Burgess Shale mandibulate arthropod with a pygidium: a case of convergent evolution. Papers in Palaeontology, 7: 1877–1894.
  • LEGG, D. A. and CARON, J. B. 2014. New Middle Cambrian bivalved arthropods from the Burgess Shale (British Columbia, Canada). Palaeontology, 57: 691–711.
  • LEGG, D. A., SUTTON, M. D., EDGECOMBE, G. D. and CARON, J. B. 2012. Cambrian bivalved arthropod reveals origin of arthrodization. Proceedings of the Royal Society B: Biological Sciences, 279: 4699–4704.
  • PARI, G., BRIGGS, D. E. G. and GAINES, R. R. 2022. The soft-bodied biota of the Cambrian Series 2 Parker Quarry Lagerstätte of northwestern Vermont, USA. Journal of Paleontology, 1–21.
  • VANNIER, J., ARIA, C., TAYLOR, R. S. and CARON, J. B. 2018. Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. Royal Society Open Science, 5:172206.
Other Links:

Pikaia gracilens

3D animation of Pikaia gracilens.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Swimmers
Phylum: Swimmers
Higher Taxonomic assignment: Unranked clade (stem group chordates)
Species name: Pikaia gracilens
Remarks:

Pikaia is considered to represent a primitive chordate (Conway Morris, 1979; Conway Morris et al., 1982) possibly close to craniates (Janvier, 1998); a stem-chordate (Smith et al., 2001); or a cephalochordate (Shu et al., 1999). Its exact position within the chordates is still uncertain and this animal awaits a full redescription.

Described by: Walcott
Description date: 1911
Etymology:

Pikaia – from the pika, a small alpine mammal and cousin of the rabbits. Pikas live in the Rocky Mountains, including near the Burgess Shale.

gracilens – from the Latin gracilens, “thin, simple,” in reference to the shape of the body.

Type Specimens: Syntypes –USNM57628b, 57629 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott Quarry on Fossil Ridge.

History of Research:

Brief history of research:

Pikaia was first described by Walcott based on a couple of specimens in a 1911 monograph dealing with various Burgess Shale worms. Two additional specimens were figured in a posthumous publication (Walcott, 1931). Walcott placed Pikaia in a now defunct group called the Gephyrea with other vermiform fossils such as BanffiaOttoia and OesiaPikaia was later considered to be a primitive chordate (Conway Morris, 1979; Conway Morris et al., 1982), an interpretation which has since been followed to some degree in most discussions about early chordate evolution (e.g., Janvier, 1998). Pikaia played a major part in Gould’s interpretations of the Burgess Shale fossils in Wonderful Life (Gould, 1989; see also Briggs and Fortey, 2005). A full redescription of this animal is currently under way (Conway Morris and Caron, in prep.).

Description:

Morphology:

Pikaia resembles Metaspriggina in outline, another chordate animal from the Burgess Shale, with an elongate body and a small anterior region bearing the head. The body is laterally flattened and there is evidence of a ventral fin towards the posterior. Numerous V-shaped or ziz-zag segments interpreted as myomeres or muscle bands are visible in all specimens. A narrow dorsal structure which runs down the length of the organism might represent a notochord, but this interpretation remains to be confirmed. The head bears two equal lobes and a pair of short and slender tentacle-like structures. There is no evidence of eyes. Just behind the head, on the ventral side of the body, there is a series of up to twelve pairs of small, short, pointed structures on either side of the midline. These are thought to be related to gill openings. The gut is narrow and the anus is terminal.

Abundance:

Pikaia is relatively rare, known from more than 60 specimens, all from the Walcott Quarry where it represents 0.03% of the specimens counted in the community (Caron and Jackson, 2008).

Maximum Size:
55 mm

Ecology:

Life habits: Swimmers
Feeding strategies: Swimmers
Ecological Interpretations:

The eel-like morphology and musculature of the animal suggest that it was likely free-swimming, although it probably spent time on the sea floor. The tentacles may have had a sensory function, and the presence of mud in its gut suggests that Pikaia was potentially a deposit feeder.

References:

BRIGGS, D. E. G. AND R. A. FORTEY. 2005. Wonderful strife: Systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology, 31(SUPPL.2 ): 94-112.

CONWAY MORRIS, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics, 10(1): 327-349.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

CONWAY MORRIS, S. H. B. WHITTINGTON, D. E. G. BRIGGS, C. P. HUGHES AND D. L. BRUTON. 1982. Atlas of the Burgess Shale. Palaeontological Association, 31 p. + 23 pl.

GOULD, S. J. 1989. Wonderful Life. The Burgess Shale and the Nature of History. Norton, New York, 347 p.

JANVIER, P. 1998. Les vertébrés avant le Silurien. GeoBios, 30: 931-950.

SHU, D.-G,. H. L. LUO, S. CONWAY MORRIS, X. L. ZHANG, S. X. HU, L. CHEN, J. HAN, M. ZHU, Y. LI AND L. Z. CHEN. 1999. Lower Cambrian vertebrates from south China. Nature, 402(4 November 1999): 42-46.

SMITH, M. P., I. J. SANSOM AND K. D. COCHRANE. 2001. The Cambrian origin of vertebrates, p. 67-84. In P. E. Ahlberg (ed.), Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, Genetics and Development. Taylor and Francis, London.

WALCOTT, C. 1911. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5): 109-145.

WALCOTT, C. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85(3): 1-46.

Other Links:

http://paleobiology.si.edu/burgess/pikaia.html

Liangshanella burgessensis

3D animation of Liangshanella burgessensis.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Swimmers
Phylum: Swimmers
Higher Taxonomic assignment: Unranked clade (Order: Bradoriida, stem group arthropods)
Species name: Liangshanella burgessensis
Remarks:

Liangshanella is a bradoriid belonging to the family Svealutidae (Siveter and Williams, 1997). The bradoriids were traditionally compared to other bivalved arthropods, such as Recent ostracods (e.g. Sylvester-Bradley, 1961) and Cambrian phosphatocopids (e.g. Maas et al., 2003). However, they are thought to be in the stem-lineage or in a sister group position relative to the Crustaceans (e.g. Hou et al., 1996; Shu et al., 1999; Hou et al., 2010).

Described by: Siveter and Williams
Description date: 1997
Etymology:

Liangshanella – from Liangshan, a region in South Shaanxi, China.

burgessensis – from the Burgess Shale. The name is derived from Mount Burgess (2,599 m), a mountain peak in Yoho National Park. Mount Burgess was named in 1886 by Otto Klotz, the Dominion topographical surveyor, after Alexander Burgess, a former Deputy Minister of the Department of the Interior.

Type Specimens: Holotype –USNM272083 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: L. circumbolina from the Flinders Ranges in South Australia; L. liangshanensis, L. rotundata, L. orbicularis, L. yunnanensis and L. baensis from southern China; L. lubrica from the Tongying Formation in Hubei, China; L. sayutinae from the Trans-Baikal area in the Russian Far-East and Greenland; L. birkenmajeri from Antarctica. See references in Siveter and Williams (1997).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge.

History of Research:

Brief history of research:

Liangshanella liangshanensis is the type species of this genus and was first described by Huo (1956) from Lower Cambrian rocks of south China. Further species have since been described in China (Zhang, 1974; Li, 1975; Qian and Zhang, 1983; Zhang, 2007), Russia and Greenland (Melnikova, 1988), Australia (Topper et al., in press) and Antarctica (Wrona, 2009). Liangshanella burgessensis from the Burgess Shale was described by Siveter and Williams (1997), and the genus has been included in studies on the biogeography, evolution and affinity of the bradoriids (e.g. Shu and Chen, 1994; Williams et al., 2007).

Description:

Morphology:

Like all bradoriids, Liangshanella burgessensis has a small bivalved carapace with a straight dorsal hinge held together by a band of cuticle. The carapaces range in length from 0.66 mm – 4.25 mm and were soft and unmineralized. The bivalved carapace of L. burgessensis is sub-circular, with the anterior end being slightly narrower than the posterior end. There is a marginal ridge along the lateral surface of the valves. A centrally situated, sub-circular muscle scar composed of numerous small pits can be seen inside the valve. No evidence of soft parts has been found.

Abundance:

Liangshanella burgessensis is known from thousands of specimens and is the most common taxon in the Walcott Quarry (11.8% of the community, Caron and Jackson, 2008).

Maximum Size:
10 mm

Ecology:

Life habits: Swimmers
Feeding strategies: Swimmers
Ecological Interpretations:

Liangshanella was likely epibenthic, living on and within the first few metres of the soft muddy seafloor. Like other bradoriids, Liangshanella was probably a deposit feeder, and may have even been scavenging or predating on microscopic non-mineralized animals (Williams et al., 2007). Most specimens of Liangshanella found are empty carapaces, being left over from when the animal moulted its exoskeleton. Bradoriids are extremely common in Cambrian rocks, suggesting they played important roles in recycling nutrients in the seabed (Shu et al., 1999). They were also important food sources for larger animals, as indicated by their common presence in coprolites (e.g. Vannier and Chen, 2005).

References:

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

HOU, X., D. J. SIVETER, M. WILLIAMS, D. WALOSSEK AND J. BERGSTRÖM. 1996. Preserved appendages in the arthropod Kunmingella from the early Cambrian of China: its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda. Philosophical Transactions of the Royal Society, B351: 1131-1145.

HOU, X., M. WILLIAMS, D.J. SIVETER, D.J. SIVETER, R.J. ALDRIDGE AND R.S. SANSOM. 2010. Soft-part anatomy of the Early Cambrian bivalve arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida. Proceedings of the Royal Society, B277: 1835-1841.

HUO, S. 1956. Brief notes on lower Cambrian Archaeostraca from Shensi and Yunnan. Acta Palaeontologica Sinica, 4: 425-445.

LI, Y. 1975. Cambrian Ostracoda and other new descriptions from Sichuan, Yunnan and Shaanxi. Professional Papers of Stratigraphy and Palaeontology, 2: 37-72.

MAAS, A., D. WALOSZEK AND K.J. MÜLLER. 2003. Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian “Orsten” of Sweden. Fossils and Strata, 49: 1-238.

MELNIKOVA, L. M. 1988. Nekotoryye bradoriidy (Crustacea) iz botomskogo yarusa vostochnogo Zabaykal’ya. Paleontologicheskiy Zhurnal, 1: 114-117.

QIAN, Y. AND S. ZHANG. 1983. Small shelly fossils from the Xihaoping Member of the Tongying Formation in Fangxian County of Hubei Province and their stratigraphical significance. Acta Palaeontologica Sinica, 22: 82-94

SHU, D. AND L. CHEN. 1994. Cambrian palaeobiogeography of Bradoriida. Journal of Southeast Asian Earth Sciences, 9: 289-299.

SHU, D., J. VANNIER, H. LUO, L. CHEN, X. ZHANG AND S. HU. 1999. Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (Lower Cambrian, Southwest China). Lethaia, 35: 279-298.

SIVETER, D.J. AND M. WILLIAMS. 1997. Cambrian Bradoriid and Phosphatocopid Arthropods of North America. Special Papers in Palaeontology, 57: 1-69.

SYLVESTER-BRADLEY, P. C. 1961. Archaeocopida, p. Q100-103. In R. C. Moore, and C. W. Pitrat (Eds.), Treatise on Invertebrate Paleontology Part Q, Arthropoda 3, Crustacea, Ostracoda. Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas.

Other Links:

None

Odaraia alata

3D animation of Odaraia alata.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Swimmers
Phylum: Swimmers
Higher Taxonomic assignment: Unranked clade (stem group arthropods)
Species name: Odaraia alata
Remarks:

The affinity of Odaraia is uncertain because, while it was historically considered as a crustacean (Walcott, 1912; Briggs, 1981; Briggs and Fortey, 1989; Hou and Bergström, 1997; Wills et al., 1998), more recent studies have placed it in the upper stem lineage to the arthropods (Budd, 2002, 2008).

Described by: Walcott
Description date: 1912
Etymology:

Odaraia – from Odaray Mountain (3,159 m) in Yoho Park, which was named by J. J. McArthur in 1887 from the Stoney First Nation Nakoda expression for “many waterfalls.”

alata – from the Latin ala, “wing,” referring to the wing-like fins of the tail.

Type Specimens: Lectotype –USNM57722 (O. alata) in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge.

History of Research:

Brief history of research:

Odaraia was first described by Walcott (1912), and was re-examined briefly by Simonetta and Delle Cave (1975). A major restudy of Odaraia was published by Briggs (1981), and it has since been included in several studies on arthropod evolution (Briggs and Fortey, 1989; Hou and Bergström, 1997; Wills et al. 1998; Budd, 2002). New morphological features of the gut and the head region were described by Butterfield (2002) and Budd (2008) respectively.

Description:

Morphology:

Much of the body of Odaraia is contained within a prominent bivalved carapace that, unusually, has its hinge line along the dorsal midline of the animal with the valves meeting on the ventral surface. The carapace forms a tube open at the front and back. The head protrudes from the front of this carapace tube, and consists of a small anterior plate, or sclerite, that bears a pair of large, spherical eyes on short stalks. On the head between the two large eyes are three small, highly reflective spots that have been interpreted as median eyes.

Behind the head, the body consisted of approximately 47 narrow segments, each bearing a pair of appendages. The appendages on the first two body segments are thin, segmented walking branches, but all appendages behind this are segmented and branch into two (biramous). These biramous appendages have a segmented inner branch that has a large spine at its base and splits into two walking branches distally, and an outer branch with filamentous blades. The tail or telson has three blades or flukes, two of which extend laterally and the third of which extends vertically. The gut is typically straight and has paired midgut glands.

Abundance:

Odaraia typically makes up less than 0.5% of the community in Walcott Quarry, from which over 200 specimens have been collected (Caron and Jackson, 2008). About a dozen specimens are known from Raymond Quarry.

Maximum Size:
150 mm

Ecology:

Life habits: Swimmers
Feeding strategies: Swimmers
Ecological Interpretations:

The tubular carapace of Odaraia would have enclosed the ventral appendages, making it impossible for the animal to use its appendages for walking on the sea floor. It therefore seems to have swum through the water column by waving the inner segmented branches of its biramous appendages. The outer filamentous branches were likely used for respiration.

The large eyes and gut glands suggest that Odaraia was an active predator, seeking out floating or swimming organisms and sieving them out the water as the current passed through the tubular carapace. To minimize the drag created by its dorsal hinge, it is quite likely that Odaraia swam on its back, similar to the modern horseshoe crab. The large telson would have been used to stabilize the animal while swimming to prevent it from rolling, and to help with steering and braking.

References:

BRIGGS, D. E. G. 1981. The arthropod Odaraia alata Walcott, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 291: 541-582.

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

BUDD, G. E. 2008. Head structures in upper stem-group euarthropods. Palaeontology, 51: 561-573.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69: 1-37.

WALCOTT, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

Other Links:

None

Marrella splendens

3D animation of Marrella splendens.

ANIMATION BY PHLESCH BUBBLE © ROYAL ONTARIO MUSEUM

Taxonomy:

Kingdom: Swimmers
Phylum: Swimmers
Higher Taxonomic assignment: Marrellomorpha (Order: Marrellida, stem group arthropods)
Species name: Marrella splendens
Remarks:

The affinity of Marrella is still somewhat uncertain. It has been grouped together with the Devonian taxa Mimetaster and Vachonisia from the Hunsrück Shale to form the Class Marrellomorpha (Beurlen, 1934; Strømer, 1944), but the placement of this class in arthropod evolution is unclear. It has been suggested to be at the base of a group of Lamellipedian arthropods, including trilobites and trilobite-like taxa, (Hou and Bergström, 1997), but has also been placed in the most basal position in the upper stem lineage arthropods (Briggs and Fortey, 1989; Wills et al., 1998).

Described by: Walcott
Description date: 1912
Etymology:

Marrella – after Dr. John Marr, palaeontologist at Cambridge University and friend of Walcott.

splendens – from the Latin splendens, “beautiful, or brilliant.”

Type Specimens: Lectotype –USNM57674 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Other species:

Burgess Shale and vicinity: none

Other deposits: Marrella sp. from the Kaili Biota of southwest China (Zhao et al., 2003).

Age & Localities:

Age:
Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).
Principal localities:

The Walcott and Raymond Quarries on Fossil Ridge. Smaller localities on Mount Field, the Tulip Beds (S7) on Mount Stephen and Mount Odaray.

History of Research:

Brief history of research:

Marrella was one of the first fossils found by Walcott, and sketches appear in his notebook as early as August 31st, 1909. Walcott informally named them “lace crabs” at the time. The next summer, on August 9, 1910, Walcott and son Stuart found the “lace crab beds” in situ, marking the discovery of the fossil-bearing beds of the Walcott Quarry of the Burgess Shale. Walcott (1912) formally described the “lace crabs” as Marrella splendens, but a reconstruction was not attempted until Raymond (1920).

Marrella was examined again by Simonetta (1962) and in a major study by Whittington (1971). New specimens collected by the Royal Ontario Museum allowed for the description of a specimen showing Marrella in the act of moulting (García-Bellido and Collins, 2004), and another re-description of the taxon (García-Bellido and Collins, 2006).

Description:

Morphology:

Marrella is a small arthropod with a wedge-shaped head shield bearing two pairs of prominent spines that project from the sides and posterodorsal margin and extend back along most of the length of the body. There is also a pair of smaller posteroventral spines. The head bears a pair of long, thin antennae with as many as 30 segments, and a pair of paddle-like appendages with six segments and numerous bushy setae along the edges.

Behind the head, the body consists of 26 segments that are small and subcircular, each bearing a pair of biramous appendages. The walking branch of this appendage has six segments, and the second branch is made of tapering gills with long, slim filaments that attach near the base of the legs. The last twelve body segments have conspicuous internal projections that form a net below the body.

The tail is minute and pointed. The stomach is located in the head near the ventral mouth, and the intestine stretches most of the length of the body. Dark stains found around the body are suggested to be the gut contents that were squeezed out during preservation. A small, triangular dorsal heart is located in the cephalic region and has arteries branching off from it.

Abundance:

Marrella is one of the most common species in the Burgess Shale. Over 25,000 specimens have been collected (García-Bellido and Collins, 2006), and it is the second most common arthropod species in Walcott Quarry, comprising 7.3% of the specimens counted (Caron and Jackson, 2008).

Maximum Size:
25 mm

Ecology:

Life habits: Swimmers
Feeding strategies: Swimmers
Ecological Interpretations:

Marrella was an active swimmer that moved just above the sea floor while deposit feeding. It could rest on the sea floor by standing on its body appendages. Swimming was achieved by undulating the second pair of paddle-like appendages on the head. Its antennae would be used to sense the environment and locate food items. The net of internal projections on the last twelve body segments would have been used to trap food particles located in water currents and to pass them along the underside of the animal. Food particles trapped in the net would be moved towards the mouth using the tips of the anterior legs.

References:

BRIGGS, D. E. G. AND R. A. FORTEY. 1989. The early radiation and relationships of the major arthropod groups. Science, 246: 241-243.

BRIGGS, D. E. G., B. S. LIEBERMAN, J. R. HENDRICKS, S. L. HALGEDAHL AND R. D. JARRARD. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82(2): 238-254.

BEURLEN, K. 1934. Die Pygaspiden, eine neue Crustaceen – (Entomostraceen) – Gruppe aus den Mesosaurier führenden Iraty-Scichten Brasiliens. Paläontologische Zeitschrift, 16: 122-138.

CARON, J.-B. AND D. A. JACKSON. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 222-256.

GARCÍA-BELLIDO, D. AND D. H. COLLINS. 2004. Moulting arthropod caught in the act. Nature, 429: 40.

GARCÍA-BELLIDO, D. AND D. H. COLLINS. 2006. A new study of Marrella splendens(Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences, 43: 721-742.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

RAYMOND, P. E. 1920. The appendages, anatomy, and relationships of trilobites. Memoirs of the Connecticut Academy of Arts and Sciences, 7: 1-169.

SIMONETTA, A. M. 1962. Note sugli artropodi non trilobiti della Burgess Shale, Cambriano Medio della Columbia Britannica (Canada). 1. contributo: 2. genere Marrella Walcott, 1912. Monitore Zoologico Italiano, 69: 172-185.

STØMER, L. 1944. On the relationships and phylogeny of fossil and recent Arachnomorpha. Norsk Videnskaps-Akademi Skrifter I. Matematisk-Naturvidenskaplig Klasse, 5: 1-158.

WALCOTT, C. 1912. Cambrian geology and paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57(6): 145-228.

WHITTINGTON, H. B. 1971. Redescription of Marrella splendens (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia. Bulletin of the Geological Survey of Canada, 209: 1-24.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

ZHAO, Y., J. YUAN, M. ZHU, X. YANG AND J. PENG. 2003. The occurrence of the genus Marrella (Trilobitoidea) in Asia. Progress in Natural Science, 13: 708-711.

Other Links:

http://paleobiology.si.edu/burgess/marrella.html