Fossil Gallery

Home > Fossil Gallery > Tegopelte

Tegopelte gigas

A giant trilobite-like arthropod

Image of Tegopelte gigas.

Get Adobe Flash player

Tegopelte gigas (USNM 189201) – Holotype. Complete specimen showing antennae and appendages partially prepared near the back. Specimen length = 270 mm. Specimen dry – direct (top) and polarized light (bottom). Walcott Quarry.

© Smithsonian Institution – National Museum of Natural History. Photos: Jean-Bernard Caron

Media 1 of 1 for Tegopelte gigas Photo

Taxonomy

Kingdom:

Animalia

Phylum:

Arthropoda

Class:

Unranked clade (stem group arthropods)

Affinity:

Tegopelte is usually compared to the soft-bodied “trilobites” such as Naraoia and Saperion, but the exact relationships of these taxa to the mineralized trilobites is uncertain (Whittington, 1977). The tegopeltids and other trilobite-like arthropods are sometimes referred to as Trilobitoidea, which when grouped together with the trilobites form the Lamellipedians (Hou and Bergström, 1997; Wills et al., 1998; Edgecombe and Ramsköld, 1999). This group has been variously placed in the upper stem lineage of the arthropods (Budd, 2002), or in the stem lineage of either the mandibulates (Scholtz and Edgecombe, 2006) or the chelicerates (Cotton and Braddy, 2004).

Species name:

Tegopelte gigas

Described by:

Simonetta and Delle Cave

Description date:

1975

Etymology:

Tegopelte – from the Greek tegos, “tile,” and pelte, “leather-shield,” referring to the shape of the dorsal body covering.

gigas – from the Greek gigas, “giant,” referring to the large size of the animal.

Type Specimens:

Holotype –USNM189201 in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.

Other species:

Burgess Shale and vicinity: none.

Other deposits: none.

Back to top

Age

Period:

Middle Cambrian, Bathyuriscus-Elrathina Zone (approximately 505 million years ago).

Back to top

Localities

Principal localities:

The Walcott Quarry on Fossil Ridge.

Back to top

History of Research

Brief history of research:

Tegopelte was first described by Simonetta and Delle Cave (1975) to include only two relatively large specimens. This original description showed Tegopelte to have a cephalon with six or seven pairs of walking appendages, a thorax of four tergites each bearing five appendages, and a tail segment with ten appendages. Whittington (1985) re-examined the animal, reducing the number of head appendages to three, and describing the thorax as having only three tergites with three appendages each. The tail in Whittington's (1985) reconstruction had two segments with a total of 20 appendages. Later re-examination by Ramsköld et al. (1996) suggested that the body has no tergites, but instead consists of an undivided dorsal shield. Tegopelte has been grouped together with the Chengjiang taxon Saperion to form the Tegopeltidae (Ramsköld et al., 1996; Hou and Bergström, 1997), a clade later confirmed by cladistic analysis (Edgecombe and Ramsköld, 1999; Hendricks and Lieberman, 2008).

Back to top

Description

Morphology:

The dorsal morphology of Tegopelte consists of an elongated oval-shaped dorsal shield that is featureless and undivided. The length of the two known specimens is 25.7 cm and 27.0 cm, making it one of the largest arthropods in the Burgess Shale. The ventral morphology consists of a pair of multi-segmented antennae at the front of the body, followed by a series of identical limbs that are segmented and branch into two (biramous), totaling approximately 33 along the entire body. The biramous limbs have a walking branch made up of six segments with a pair of spines on the terminal segment, and a filamentous branch where numerous elongated oval blades attach to a central shaft. The biramous limbs decrease in size towards the posterior end of the body.

Abundance:

Tegopelte is extremely rare, with only two known specimens.

Maximum size:

270 mm

Back to top

Ecology

Life habits:

Epibenthic, nektobenthic, mobile

Feeding strategies:

Unknown

Ecological Interpretations:

Tegopelte probably spent much of its time walking on the seafloor, based on the presence of many appendages. It used the segmented branches of its biramous appendages for walking, and it is likely that the filamentous branches were used for oxygen exchange, and to propel the animal through the water during short bursts of swimming. The antennae would have been used to sense the environment. The lack of eyes, gut glands and feeding appendages make it difficult to allocate a feeding strategy to Tegopelte.

Back to top

References

Bibliography:

BUDD, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417: 271-275.

COTTON, T. J. AND S. J. BRADDY. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169-193.

SCHOLTZ, G. AND G. D. EDGECOMBE. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216: 395-415.

EDGECOMBE, G. D. and L. RAMSKÖLD. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Jounral of Paleontology, 73: 263-287.

HENDRICKS, J. R. AND B. S. LIEBERMAN. 2008. New phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. Journal of Paleontology, 83: 585-594.

HOU, X. AND J. BERGSTRÖM. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45: 1-116.

RAMSKÖLD, L., J. CHEN, G. D. EDGECOMBE AND G. ZHOU. 1996. Preservational folds simulating tergite junctions in tegopeltid and naraoiid arthropods. Lethaia, 29: 15-20.

SIMONETTA, A. M. AND L. DELLE CAVE. 1975. The Cambrian non-trilobite arthropods from the Burgess shale of British Columbia: A study of their comparative morphology, taxonomy and evolutionary significance. . Palaeontographia Italica, 69: 1-37.

WHITTINGTON, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, B, 280: 409-443.

WHITTINGTON, H. B. 1985. Tegopelte gigas, a second soft-bodied trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology, 59: 1251-1274.

WILLS, M. A., D. E. G. BRIGGS, R. A. FORTEY, M. WILKINSON AND P. H. A. SNEATH. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33-105. In G. D. Edgecombe (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.

Other links:

None

Back to top